Creativity and Academic Achievement: A Meta-Analysis

Aleksandra Gajda and Maciej Karwowski The Maria Grzegorzewska University Ronald A. Beghetto University of Connecticut

This article reports on a meta-analysis of 120 studies (total N=52,578; 782 effects) examining the relationship between creativity and academic achievement in research conducted since the 1960s. Average correlation between creativity and academic achievement was r=.22,95% CI [.19, .24]. An analysis of moderators revealed that this relationship was constant across time but stronger when creativity was measured using creativity tests compared to self-report measures and when academic achievement was measured using standardized tests rather than grade point average. Moreover, verbal tests of creativity yielded significantly stronger relationships with academic achievement than figural tests. Theoretical and practical consequences are discussed.

Keywords: creativity, school grades, academic achievement, meta-analysis

Supplemental materials: http://dx.doi.org/10.1037/edu0000133.supp

Is there a relationship between creativity and academic achievement? This is a longstanding and largely unresolved question. For more than half a century, educators and psychologists have attempted to address this issue (Cline, Richards, & Abe, 1962; Mednick, 1963). At a conceptual level, scholars have asserted that creativity and learning represent interrelated phenomena (e.g., Beghetto, 2016a; Guilford, 1967; Piaget, 1962, 1981; Sawyer, 2012; Vygotsky, 1967/2004). Some of the earliest and most prominent theorists in the field have noted this link. Guilford (1967), for instance, asserted that creativity and learning are essentially the same phenomenon. Vygotsky (1967/2004) similarly argued that the creative imagination "is a completely essential condition for almost all human mental activity" (p. 17). Another example is Piaget's theory of genetic epistemology. Indeed, creativity is central to Piaget's theory of learning. As Gruber (in Bringuier, 1980) has explained in reference to Piaget's theory, "The child does not learn simply what the adult tells him, he reinvents. It's a kind of creativity" (p. 67).

Regardless of the theoretical stance one takes on learning—be it behavioral, cognitive, constructivist, situated, sociomaterial, or some other theoretical orientation—creativity and learning share fundamental similarities. Indeed, both creativity and learning involve change. More specifically, creativity refers to new and meaningful changes in thoughts, products, and actions (Beghetto, 2016a; Sternberg, 1999). Similarly, learning repre-

This article was published Online First August 18, 2016.

Aleksandra Gajda and Maciej Karwowski, Department of Educational Sciences, The Maria Grzegorzewska University; Ronald A. Beghetto, Department of Educational Psychology, University of Connecticut.

The preparation of this article was supported by a grant from the National Science Centre, Poland (UMO-2011/03/N/HS6/05073).

Correspondence concerning this article should be addressed to Maciej Karwowski, Creative Education Lab, The Maria Grzegorzewska University, Szczesliwicka 40 Street, 02353 Warsaw, Poland. E-mail: mkarwowski@aps.edu.pl

sents relatively stable changes in understanding and behavior (Alexander, Schallert, & Reynolds, 2009). Moreover, both learning and creativity can be viewed as processes and products (e.g., Alexander et al., 2009; Beghetto, 2016a; Donovan & Bransford, 2005; Mumford, Medeiros, & Partlow, 2012; Wallas, 1926). It is therefore possible to say that "a creative act [as a product is an instance of learning [as a process], for it represents a change in behavior" (Guilford, 1950, p. 446). Along these same lines, it is also possible to say learning (as a product) is a creative process, because it results from new and personally meaningful changes in one's prior understanding (Beghetto, 2016a). Given the theoretical links between creativity and learning, it seems reasonable to assume that there would be a positive relationship between creativity and measures of academic achievement. The empirical work that has examined this link, however, has yielded a more equivocal picture. Some researchers have, for instance, reported positive associations ranging from .10-.56 (Cicirelli, 1967; Getzels & Jackson, 1962; Niaz, Núñez, & Pineda, 2000; Ohnmacht, 1966). Others have reported little or no association (e.g., Edwards & Tyler, 1965; Grigorenko et al., 2009). Still others have reported negative associations (e.g., Anderson, White, & Stevens, 1969). In fact, some researches have noted all three patterns within the same study (e.g., Gralewski & Karwowski, 2012). Consequently, the best that can be said about whether there is a link between creativity and academic achievement is this: It depends.

Why might this be the case? The present meta-analysis endeavors to address this question. More specifically, we have two primary aims for our study. Our first goal is to provide an average effect size of the relationship between creativity and academic achievement. Our second goal is to examine the potential impact of factors that may moderate the relationship between creativity and academic achievement. Although there are examples of meta-analytic studies that have addressed related issues (e.g., the relationship between creativity and intelligence; see Kim, 2005), we are not aware of any published meta-analytic studies of creativity

and academic achievement.¹ We therefore endeavor to shed light on the mixed findings of prior research by providing a more stable estimate of the relationship between creativity and academic achievement and by examining factors that may potentially moderate this relationship.

Creativity and Academic Achievement

Creativity

Creativity scholars generally agree that creativity represents a combination between originality, novelty, or newness *and* usefulness, meeting task constraints, or meaningfulness as defined within a particular sociocultural and historical context (Amabile, 1996; Kaufman & Beghetto, 2009; Plucker, Beghetto, & Dow, 2004; Simonton, 2012; Sternberg & Lubart, 1999). The following simplified notation captures this definition (adapted from Beghetto & Kaufman, 2014; Simonton, 2012):

$$C = O \times TC$$
[——CONTEXT——]

In the above notation, C refers to creativity, O refers to originality, and TC refers to task constraints. As specified by this formulation, creativity is a multiplicative combination of originality and task constraints as situated within a particular context. Consequently, something that is original (O=1) but does not meet contextually defined task constraints (TC=0) could be called original but not creative (C=0). Consider, for instance, a student taking a calculus exam who produces a vivid and quite stunning pencil drawing of mathematical symbols transforming into doves (instead of solving the problem presented on the exam). Such a response is clearly original, but it would not be considered creative in the context of the exam. In order for a student's response on a calculus exam to be considered creative, it would need to represent a novel solution to the problem at hand (i.e., meet the task constraints).

In the context of academic learning, creativity can be thought of as occurring at both a subjective (creativity as part of the act of learning) and an intersubjective (learning as a creative act) level (Beghetto, 2016a). At the subjective level, students exercise their creativity by developing new and personally meaningful ideas, insights, and understandings within the context of particular academic constraints (Beghetto, 2007; Beghetto & Kaufman, 2007). At the intersubjective level, students who share their unique and academically accurate insights and interpretations can also contribute to the learning and understanding of others (Beghetto, 2016a)

In this way, creativity is more than originality (Beghetto, 2010), divergent thinking (Baer, 1993; Beghetto, 2013; Guilford, 1967; Runco, 1991), or vividness of imagination (Dziedziewicz & Karwowski, 2015; Jankowska & Karwowski, 2015). It also involves deductive and inductive thinking (Dunbar, 1997; Vartanian, Martindale, & Kwiatkowski, 2003; Weisberg, 2006), as well as the ability to use specific problem-solving strategies to generate novel solutions to complex and ill-defined problems (Beghetto, 2016b; Finke, Ward, & Smith, 1992; Sternberg, 1998). All these characteristics are important for the acquisition of new knowledge and learning (Greiff et al., 2013). In this way, creativity and learning work hand-in-hand (e.g., Beghetto, 2016a; Guilford, 1967; Piaget,

1981; Vygotsky, 1967/2004). It therefore seems reasonable to suggest that creativity would be related to academic achievement, which is conceptualized as the outcome of learning.

Academic Achievement

Academic achievement is an outcome of learning, which is typically measured by classroom grades, classroom assessments, and external achievement tests. Researchers who have examined correlates of academic achievement have identified a wide array of factors, including individual, social, and sociocultural influences (see Hattie, 2009, for a review). Of these, student characteristics play one of the broadest and most influential roles in explaining variations in academic achievement. Student characteristics represent a highly heterogeneous dimension, which includes personality (Chamorro-Premuzic & Furnham, 2003; Poropat, 2009), cognitive abilities (e.g., Chamorro-Premuzic & Furnham, 2008; Deary, Strand, Smith, & Fernandes, 2007), intensity and type of motivation (Di Domenico & Fournier, 2015), self-esteem and academic self-concept (Marsh & Hau, 2004), and socioeconomic factors (Johnson, McGue, & Iacono, 2007; Sackett, Kuncel, Arneson, Cooper, & Waters, 2009).

Creativity is yet another student characteristic that shares a conceptual, albeit equivocal, link with academic achievement. As we have discussed, researchers have reported associations that are relatively strong (e.g., r = .41, Marjoribanks, 1976 or r = .66, Yeh, 2004), modest (e.g., r = .20, McCabe, 1991), null (e.g., r = .03, Tatlah, Aslam, Ali, & Iqbal, 2012), and, in some cases, negative (e.g., r = -.03, Anderson et al., 1969). The aim of the present study is to help clarify the empirical ambiguity surrounding the link between creativity and academic achievement by providing a stable estimate of the association and also examine whether and how potential moderators might influence that association

Potential Moderators

What might account for variations in the relationship between creativity and academic achievement? Researchers who have addressed this question (e.g., Freund & Holling, 2008; Gralewski & Karwowski, 2012; Vijetha & Jangaiah, 2010) have identified several moderating factors (see Figure 1). As illustrated in Figure 1, those factors include (a) the type of measurement used, (b) grade level of participants, (c) the decade the study was conducted, and (d) the geographic region of the study. In the sections that follow, we briefly describe each of these potential moderators.

Type of Measurement

The type of measurement represents one of the most clearly identifiable moderators of the empirical relationship between cre-

¹ An anonymous reviewer brought to our attention an unpublished report (Halliburton-Beatty & Simms, 2013) that reanalyzed meta-analytic data testing the impact of creativity training programs on school achievement (presented in the meta-synthesis by Hattie, 2009). This report, however, has different scope and focus than our present study. As previously described, our analysis focuses on the relationship between creative ability/self-concepts and academic achievement (rather than the impact of creative training programs), and we analyze effects reported in primary source material (rather than a reanalysis).

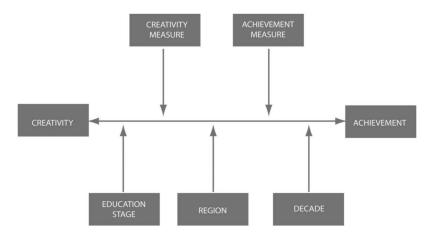


Figure 1. Potential factors influencing creativity and achievement relationship.

ativity and academic achievement. Put simply, regardless of the conceptual overlap between creativity and academic achievement, the degree of the observed relationship between creativity and academic achievement will, in large part, be determined by the amount of overlap in how each construct is measured. Moreover, there is a wide array of methods measures that can and have been used to measure both constructs (Freund & Holling, 2008; Gralewski & Karwowski, 2012). With respect to creativity, this includes everything from self-report measures to more objective creativity tests. To further compound this issue, there is little consensus in the field of how to best measure creativity (see Freund & Holling, 2008; Kaufman, Plucker, & Baer, 2008).

The kinds of creativity measures typically used to examine the relationship between creativity and achievement can be classified into two types: self-report and more objective creativity tests. Self-report measures tend to focus on beliefs about one's creative ability (e.g., Karwowski & Lebuda, 2015; Skager, Klein, & Schultz, 1967), creative activity or achievement (mainly inventories measuring the intensity of declared creative behaviors and activities or observable creative accomplishments, e.g., Carson, Peterson, & Higgins, 2005; Jauk, Benedek, & Neubauer, 2014), and indicators of creative personality (e.g., Naderi, Abdullah, Aizan, Sharir, & Kumar, 2009). More objective creativity tests tend to focus on divergent thinking skills (i.e., the ability to generate original ideas). These include tests based on Guilford's theory (e.g., Toll, 1985), the Test of Creative Thinking–Drawing Production (TCT-DP) by Urban and Jellen (Urban, 1991; Karwowski & Gralewski, 2013), the Torrance Test of Creative Thinking (TTCT; Clapham, 2004; Torrance, 1968), and other instruments (e.g., the Remote Associates Test, Mednick, 1963, or the Sternberg Triarchic Abilities Test, Chooi, Long, & Thompson, 2014).

Creativity tests can be further distinguished by modality: verbal tests (i.e., requiring participants to provide verbal answers to the problems provided; e.g., the TTCT verbal, Hansenne & Legrand, 2012, or the Verbaler Kreativity-Test, Rindermann & Neubauer, 2004) and figural tests (i.e., requiring participants to draw the solution; e.g., the TCT-DP, Gralewski & Karwowski, 2012, or the Test of Creative Imagery Ability, Jankowska & Karwowski, 2015). The most popular divergent thinking tests (e.g., TTCT) can

be further divided into dimensions of divergent thinking (i.e., fluency, flexibility, originality, or elaboration). Previous studies have demonstrated that aspects of divergent thinking vary in their association with academic achievement (e.g., Auzmendi, Villa, & Abedi, 1996; Feldhusen, Treffinger, Van Mondfrans, & Ferris, 1971). We therefore explore whether these different dimensions influence the relationship between creativity and academic achievement but, given the limited work in this area, have no prediction as to the specific strength of this influence (e.g., non-existent, weak, moderate, strong).

With respect to academic achievement, researchers have also used a wide array of methods and measures to examine the relationship with creativity. Similar to creativity measures, academic achievement measures can be classified into two types: subjective assessments and objective tests. Grade point averages (GPAs) represent the most common type of subjective measure used in studies that have examined the link with creativity (e.g., Chamorro-Premuzic, 2006; Freund & Holling, 2008; Gralewski & Karwowski, 2012). More objective tests refer to any externally constructed tests of academic subject matter knowledge or achievement (e.g., Tan, Mourgues, Bolden, & Grigorenko, 2014).

Taken together, the measures of creativity and academic achievement typically used in studies that have examined their relationship tend to include both subjective and more objective types of measurement. Moreover, creativity measures tend to focus more on assessing divergent thinking skills and abilities (e.g., generating original ideas), whereas academic tests tend to focus more on whether students can meet predetermined task expectations (e.g., accurately solving a problem in mathematics). Figure 2 provides a visual representation of where creativity and academic achievement tests tend to place their emphasis.

As depicted in Figure 2, these areas of emphasis map onto the conceptual definition of creativity ($C = O \times TC$), with creativity tests tending to focus on the originality (O) aspect of creativity and measures of academic achievement tending to focus on meeting predetermined task constraints (TC). The area of empirical overlap between these measures is therefore restricted to the narrow intersection between O and TC. We therefore might expect that the empirical relationship between creativity and academic achievement is constrained by the types of measures used to assess these

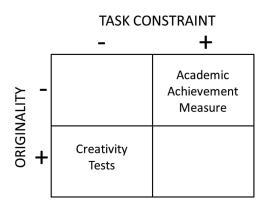


Figure 2. A visual representation of where creativity and academic achievement tests place emphasis.

constructs. It is unclear, however, how various types of measurement used in previous studies affect the average relationship between creativity and academic achievement. We therefore endeavor to shed light on this moderating factor.

Education Stage

Education stage is another potentially moderating factor in the relationship between creativity and academic achievement. Some of the earliest creativity research in classrooms was conducted by Torrance (1968), who documented what he called a fourth-grade slump (i.e., declines in creativity in the transition from third to fourth grade). Since that time, researchers have demonstrated variability in creativity scores across stages of education. The relationship between the imagination of children starting school and their achievements, for instance, hardly exists at all, r = .02(Karwowski & Dziedziewicz, 2012). However, as early as the fifth grade, that relationship has been found to be more substantial, r =.23 (Jankowska, Gajda, & Karwowski, 2015; Karwowski, 2015). In yet other studies, the relationship between creativity and achievement in elementary school students has been found to range between r = .08 (Gajda, 2008) and r = .39 (Awamleh, Al Farah, & El-Zraigat, 2012). Variations have also been found in middle grades, r = .18 (Rindermann & Neubauer, 2004) and high school, ranging from r = .12 (Kim & Michael, 1995) to r = .21(Karwowski, 2005).

Although education stage seems to moderate the relationship between creativity and achievement, there is no clear pattern or direction that can be expected from previous findings. As such, the present study aims to provide a more stable estimate of the influence of grade level on the relationship between creativity and academic achievement.

Decade

As with education stage, there is prior empirical work suggesting that decade may influence the relationship between creativity and academic achievement. Kim (2011) conducted one of the largest cross-sectional studies (N=279,599) that examined the pattern of creativity scores over six time periods (from 1966–2008). Kim summarized her findings by stating that creativity scores, measured by the TTCT, are "declining overtime among

Americans of all ages, especially kindergarten through third grade, the decline is steady and persistent, from 1990 to present, and ranges across various components tested by the TTCT" (p. 293). When taking the full range of decades into account, the patterns demonstrate more variability (including periods of gain, stagnation, and decline). Moreover, the changes from one sampled time period to the next are often (but not always) statistically significant, and the magnitude of the effect varies from small to large (depending on the particular component of the TTCT examined and the time period tested).

Consequently, we expect that time period likely will have some influence on the relationship between creativity and academic achievement, but it is difficult to predict the direction or magnitude of that difference. Our analysis will, however, allow us to examine whether studies conducted across different time periods moderate the relationship between creativity and academic achievement.

Culture

Finally, we expect culture to play a moderating role in the relationship between creativity and academic achievement. The direction and magnitude of that difference, however, are once again difficult to predict. Researchers have noted that conceptualizations of creativity can and do differ across cultures (Kaufman & Sternberg, 2006; Rudowicz, 2003). Given that there is so much variation within cultures (Freund & Holling, 2008; Gralewski & Karwowski, 2012), it is difficult to untangle the within variation from the between variation in previous work. As such, the present study aims to help clarify whether and to what extent culture moderates the relationship between creativity and academic achievement.

Method

Search Strategies

We followed a three-step procedure to select the studies included in our meta-analysis. The first step was a review of articles and research papers in English. We searched EBSCO, PsycExtra, Academic Search Complete, PsycInfo, PsycArticles, and ERIC databases and used the resources of JSTOR, Science Direct, SAGE Journals, Taylor & Francis, and ProQuest. In the next step, we analyzed book publications using three electronic libraries: Wiley Online Library and Questia, as well as Google Books.

We used the following search parameters to collect articles (keywords, abstracts, titles, and full text): academic achievement* or school grades* or school achievement* or schoolastic achievement* or grade point average and creative ability* or creativity* or divergent thinking*. Finally, in the third step of our search procedure, we explored whether any additional studies could be found by conducting a review of Polish-language periodicals devoted to psychology and education. We chose Polish-language periodicals because the first two authors had access to this literature and are fluent in the language.

Inclusion and Exclusion Criteria

Our search yielded a total of 148 studies. We then applied the following selection criteria to those studies. First, we only consid-

ered studies that presented a quantitative measure of the strength of the relationship between creativity and academic achievement, even if the relationship between creativity and academic achievement was not the primary goal of the study. A total of 18 studies² did not meet this first selection criterion and were eliminated from the analysis.

Next, we only included studies if they used more objective measures of creativity (e.g., TTCT) or self-report scales that demonstrated adequate reliability, such as measures of creative personality (e.g., Naderi et al., 2009) or creative self-confidence beliefs (e.g., Skager et al., 1967). This resulted in the elimination of four studies.³ With respect to academic achievement, we included studies that used GPA (e.g., Chamorro-Premuzic, 2006), external examinations (e.g., Tan et al., 2014), and achievement tests created by researchers for the purpose of their study (e.g., Dobrołowicz, 2002; Sethi, 2012). This resulted in the elimination of one study that used students' self-assessments of academic achievement (Kaltsounis, 1974).

We also excluded two studies that used data presented in other publications, one study that used data previously published by a different author, and two studies that used multilevel models. The two studies that used multilevel models were excluded because they provided unstandardized regression coefficients that were inflated by the control of nesting students into classes and schools. Although β values are sometimes translated into r values (Peterson & Brown, 2005), there is no widely accepted or robust procedure for translating coefficients from multilevel models into standardized effect size for use in meta-analysis.

A total of 120 of the original 148 studies met our selection criteria and were included in the analysis. Taken together, the included studies had 782 effects with over 50,000 participants (N=52,578). Participants had a mean age of 13.8 years (SD=2.43) and attended elementary, middle, and high schools as well as colleges or universities. The studies were conducted between 1962 and 2015, in various countries (including the United States, European countries, Asia, and Africa). Table 1 provides a detailed overview of the studies included in the meta-analysis.

Coding Procedures

The first two authors independently coded each article for relevant information, including sample size, sample selection, effect size, and information necessary for the moderator analyses (i.e., measures of creativity and academic achievement, participants' age and stage of education, date and location of publication). Next, we reviewed the coded data and articles, as well as discussed and resolved any discrepancies to help eliminate errors in coding.

Moderators

For each study included in our analysis, we coded for the key moderators of interest. With respect to type of measurement, we coded the type of creativity measure used in the study (i.e., creative ability test or self-report questionnaire). We distinguished between different types of creativity tests, including tests based on Guilford's theory, the TCT-DP by Urban and Jellen, the TTCT, and other instruments (e.g., Remote Associates Test; Mednick, 1963). We also coded the different dimensions of creative ability mea-

sured by tests used in the studies (i.e., overall indices of creative ability, fluency, flexibility, originality of thinking, and elaboration). With respect to academic achievement, we coded for how achievement was measured (i.e., GPA or achievement test) and type of achievement measured (i.e., humanities, science, overall performance, sports).

Finally, we coded (a) education stage (i.e., elementary, middle school, high school, college/university), (b) study year (i.e., the year the study was conducted), and location (i.e., the country or continent where the study was conducted). We also included two dichotomously coded control variables that might influence the relationship between creativity and academic achievement. Those control variables included (a) goal of the study (i.e., primary purpose was examining the relationship between creativity and academic achievement vs. another goal) and (b) publication status (i.e., published or unpublished study).

Statistical Methods

When possible, we computed effect size using the values of correlation coefficients (r) and sample size (N). In a few studies, however, we converted the effect value provided (e.g., β , F, or χ^2) to the value of the r correlation coefficient. To analyze main effects, we used multilevel meta-analysis (Cheung, 2014, 2015; Konstantopoulos, 2011; Lebuda, Zabelina, & Karwowski, 2015), because individual correlations were clustered within studies. We carried out a three-level meta-analysis. Level 1 related to the participants in individual studies, Level 2 to interdependent effects within independent studies, and Level 3 to the studies themselves.

Three-level meta-analysis made it possible to obtain robust estimates of effect size, specifically unbiased estimates of standard errors, Level 2 (within-study) variance, and Level 3 (between-study) variance. Three-level meta-analysis was required because averaging the effects of individual studies would have significantly weakened the power of the entire analysis (we had 782 effects, but these were drawn from 120 studies) and would not have allowed us to estimate the influence of various moderators (as these were attributed to specific effects rather than studies).

² Those 18 studies focused on analyzing the theory of positive disintegration (Gallagher, 1985); the effectiveness of training influences (Blumen-Pardo, 2002; Cheung, Roskams, & Fisher, 2006; Malekian & Fathi, 2012; Yorke-Viney, 2007); the analysis of success in teaching (Hodder, 1972); the analysis of the relationship of sibling structure with creativity, intelligence, and academic achievement (Cicirelli, 1967); investigating the predictors of entrepreneurship (Farzaneh et al., 2010); seeking various predictors of academic achievement (Childs, 1978; Muhich, 1972; Owen, Feldhusen, & Thurston, 1970; Richards & Casey, 1975; Yamamoto, 1964); analyzing the relationship between parenting style, perfectionism, and creativity in talented individuals with high academic achievement (Miller, Lambert, & Speirs Neumeister, 2012); the teacher's perception of creativity, intelligence, and academic achievement (Mayfield, 1979); the measurement of creativity, intelligence, and academic achievement (Eisenman, Platt, & Darbes, 1968); analyzing the reliability and validity of ideational originality (Runco & Albert, 1985); and creativity in exact sciences (Son, 2009).

³ Those four studies included a single self-report question from a questionnaire as a measure of creativity (Unal & Demir, 2009), judges' rating of participants with low-reliability products (Hasirci & Demirkan, 2007; Priest, 2006), and a questionnaire completed by the teacher concerning students' creativity level (Baltzer, 1988).

This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

The Subjects of the Studies Included in the Meta-Analysis

Year		tes 1963	tes 1963	tes 1964	tes 1963	tes 1966	tes 1966	tes 1966	tes 1966	les 1966	tes 1967	les 1967	tes 1967	tes 1967
Country	United States	United States	United States	United States	United States	United States	United States	United States	United States	United States	United States	United States	United States	United States
School	high school	college/university	high school	elementary, middle and high school	elementary	elementary	elementary	college/university	college/university	college/university	high school	college/university	college/university	college/university
No. of effects	12	2	14	v	4	18	6	-	ε	18	18	٢	'n	2
-	.32	03	.30	.51	.32	.56	.22	.34	.02	.16	90.	.27	.03	.32
N	161	21	119	277	203	204	790	75	92	417	159	357	150	1,211
Achievement measure	GPA	GPA	GPA	The Iowa Test of Basic Skills	SAT	SAT	SAT	GPA	GPA	Scholastic Aptitude Test	Iowa Tests of Educational Development	GPA	Medical College Admissions Test	Scholastic Aptitude Test
Creativity measure	Guilford Tests of Divergent Thinking	Creativity Rating Scale	Kemote Associations 1 est Guilford Tests of Divergent Thinking	Getzels, Jackson Creative Thinking Tasks	TTCT	Getzels and Jackson Creative Thinking Tasks: 2. Uses for Things	Minnesota Tests of Creative Thinking	Test of Imagination The-Ask-and-Guess Test	Hidden Figures Thurstone Complex Space Pitcher	Guilford Tests of Divergent Thinking	Minnesota Tests of Creative Thinking	Self-Ratings of Creativity Symbol Production Task Controlled Associations Task Alternate Uses Task	Opinion, Attitude and Interest Survey	Remote Associations Test
Type of publication	Journal article	Journal article	Journal article	Unpublished dissertation	Unpublished study	Journal article	Journal article	Journal article	Journal article	Unpublished study	Journal article	Journal article	Journal article	Journal article
Aim of the study	The reliability of creativity test	Datteries The creativity of	psychology students Creativity and achievement tests in	The relationship of creativity with intelligence and academic	achievement The intellectual functioning of children with high potential from culturally threatened	Academic achievement, anxiety, and creative thinking	Academic achievement, intelligence, and creative thinking	Creativity and academic achievement	Measures of artistic creativity and flexibility of thinking	The relationship between creative thinking and academic success	Creativity and unpredictability as related to academic achievement	Predicting academic and artistic achievement	The creative medicine student: a descriptive study	Creative thinking and the level of
Study	Cline, Richards, & Abe, 1962	Mednick, 1963	Cline, Richards, & Needham, 1963	DeBoer, 1964	Karnes, Zehrbach, Studley, & Wright, 1965	Ohnmacht, 1966	Yamamoto & Chimbidis, 1966	Bentley, 1966	Klein, Skager, & Erlebacher, 1966	Dowd, 1966	Yamamoto, 1967	Skager, Klein, & Schultz, 1967	Graves, Ingersoll, & Evans, 1967	Mednick & Andrews, 1967
No.	-	2	С	4	S	9	_	∞	6	10	Ξ.	12	13	14

(table continues)

This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

ed
ntinu
(00)
ble 1
Tal

Country Year	United States 1968	United States 1968	United States 1968	United States 1969	United States 1969	1969	United States 1971	United States 1971	United States 1972	United States 1972	United States 1973	United States 1974	United States 1975
	Unite	Unite	Unite		Unite	Iraq			Unite		Unite	Unite	
School	elementary	high school	high school	middle-school	high school	elementary	college/university	elementary and high school	high school	college/university	elementary	high school	college/university
No. of effects	4	κ	2	40	2	к	11	112	16	∞	5	2	10
7	90.	.35	.42	.26	03	.05	.02	.11	.13	90.	.22	.22	.16
N	196	105	258	278	197	304	314	356	131	292	ic 196	15,326	133
Achievement measure	Iowa Achievement Test GPA	GPA	GPA	GPA Iowa Tests of Educational Develonment	GPA Language Test CAT	GPA	GPA	GPA	GPA	GPA ACT	Seeing Through Arithmetic Tests	GPA	Achievement Test GPA
Creativity measure	Gulamerian Flexibility and Originality tests	Guilford Tests of Divergent Thinking	Getzels and Jackson Creativity Test	TTCT, verbal & figural	The Utility Test The Apparatus Test The Plot Titles Test	Divergent Thinking Test	AC Test for Creative Ability The Purdue Creativity Test Guilford's Divergent	TTCT, verbal & figural	Wallach and Wing Test	TTCT, figural	TCT, verbal & figural	Getzels and Jackson Unusual Uses Creativity Test TTCT	Torrance's Creative Motivation Inventory Khatena-Torrance What
Type of publication	Journal article	Journal article	Unpublished dissertation	Journal article	Journal article	Unpublished dissertation	Journal article	Journal article	Unpublished dissertation	Unpublished study	Journal article	Journal article	Journal article
Aim of the study	Figural creativity, intelligence, and children's	personalty Differences between intelligence and creativity: suppositions concerning the role	Socioeconomic status, race, gender, IQ, age, and GPA	among adolescents Interactions between creativity and intelligence	Crativity, intelligence, students' achievement, and behavior	The relationship between academic achievement, creativity, and intelligence	Types of students' creativity and their relationship with academic grades	The relationship between school grades and the level of creative thinking	Time-bound and non-time-bound measures of creativity and	The relationship between nonverbal	Arithmetical achievement and	Race, socialization, and mobility in education and early professional	Creativity and school grades, school activities, and
Study	Hetrick, Lilly, & Merrifield, 1968	Wade, 1968	Tibbetts, 1968	Bowers, 1969	Anderson, White, & Stevens, 1969	Kanderian, 1969	Gluskinos, 1971	Feldhusen, Treffinger, Van Mondfrans, & Ferris 1971	Wagner, 1972	Stallings & Gillmore, 1972	Kaltsounis & Stephens, 1973	Porter, 1974	Joesting, 1975
No.	15	16	17	18	19	20	21	22	23	24	25	26	27

This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

1 40.	Table I (continued)										
No.	Study	Aim of the study	Type of publication	Creativity measure	Achievement measure	N	7	No. of effects	School	Country	Year
28	Marjoribanks, 1976	Regression analyses: academic achievement, intelligence, and creativity	Journal article	Adaptation of Torrance and Guilford Tests of Divergent Thinking	GPA	450	.41	18	middle-school	United States	1976
29	Rodriguez, 1980	The influence of creativity training on academic achievement and creative thinking	Unpublished dissertation	Divergent Thinking— Structure of Intellect Learning Abilities Test (SOILAT)	Comprehensive Test of Basic Skills	188	05	4	elementary	United States	1980
30	Wódz, 1981	Students' creative talents and their academic achievement	Journal article	Wallach Kogan Creativity Test	GPA	09	.24	П	elementary	Poland	1981
31	Stiles, 1982	Correlates of creativity among students	Unpublished dissertation	TTCT, verbal & figural	GPA	89	.14	∞	college/university	United States	1982
32	Jackson, 1982	The relationship of cognitive abilities with intelligence and academic achievement	Unpublished dissertation	TTCT	Comprehensive Test of Basic Skills Prescriptive Reading Test Prescriptive Mathematics Test	92	.30	4	elementary	United States	1982
33	Westcott, 1983	Signature humor as an alternative in the identification of creative and talented students	Unpublished dissertation	TTCT, figural	The Iowa Tests of Basic Skills GPA	62	.43	9	high school	United States	1983
34	Toll, 1985	The relationship between Guilford's tests and reading comprehension	Unpublished dissertation	New Uses Test Seeing Different Meanings Test Judging Object Adaptations Test	Gates-Mac Ginitie Reading Test scores	105	.24	ю	elementary	United States	1985
35	Janes, 1988	The relationship between creativity test scores and receiving awards and school grades	Unpublished dissertation	TTCT, figural	GPA	209	60.	4	high school	United States	1988
36	Orieux, 1989	Correlates of creative abilities and achievement in high schools	Unpublished dissertation	The Creative Activities Checklist Guilford Tests of Divergent Thinking	GPA	157	.40	4	high school	United States	1989
37	McCabe, 1991	The influence of creativity and unpredictability on academic achievement	Journal article	TTCT, verbal & figural	GPA	210	.20	21	middle-school	United States	1991
38	Guastello, Bzdawka, Guastello, & Rieke, 1992	Cognitive abilities and creative behavior	Journal article	CAB 5 The Remote Consequences Test	GPA	144	.18	ĸ	college/university	United States	1992
39	Popov, 1992	Creativity and reading comprehension	Journal article	Guilford Tests of Divergent Thinking	Reading Comprehension Test	63	.38	10	college/university	Russia	1992
40	Kim & Michael, 1995	The relationship of creativity with academic achievement and the preferred style of thinking	Journal article	TTCT, verbal & figural	GPA	193	.12	N	high school	Korea	1995

This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

DIO	
_	
_	
77	
=	
ಡ	
_	
=	
_	
disseminated	
10	
ž.	
-0	
=	
_	
De	
ŏ.	
2	
2	
10	
0	
Ē	
20	
=	
_	
DI I	
and 18	
ındıvıdual üser	
Sel	
SÓ.	
=	
_	
_	
ಸ	
-	
100	
ч.	
5	
-	
=	
=	
_	
U.	
rne	
_	
OI	
_	
\sim	
Se	
<i>(</i> 2)	
nse	
=	
E E	
nal	
nai	
rsonal	
personal	
personal	
personal	
nai	
tne personal	
tne personal	
tne personal	
ror tne personal	
ror tne personal	
ror tne personal	
ror tne personal	
ror tne personal	
ror tne personal	
ror tne personal	
solely for the personal	
solely for the personal	
solely for the personal	
ed solely for the personal	
ded solely for the personal	
ded solely for the personal	
ded solely for the personal	
ded solely for the personal	
ded solely for the personal	
ded solely for the personal	
intended solely for the personal	
intended solely for the personal	
ded solely for the personal	
is intended solely for the personal	
is intended solely for the personal	
is intended solely for the personal	
cie is intended solely for the personal	
cie is intended solely for the personal	
cie is intended solely for the personal	
cie is intended solely for the personal	
article is intended solely for the personal	
article is intended solely for the personal	
article is intended solely for the personal	
nis article is intended solely for the personal	
article is intended solely for the personal	
nis article is intended solely for the personal	
nis article is intended solely for the personal	
nis article is intended solely for the personal	
nis article is intended solely for the personal	
nis article is intended solely for the personal	
nis article is intended solely for the personal	
nis article is intended solely for the personal	
nis article is intended solely for the personal	
nis article is intended solely for the personal	
nis article is intended solely for the personal	
nis article is intended solely for the personal	
nis article is intended solely for the personal	
nis article is intended solely for the personal	

Year	1996	1997	1998	2000	2000	2000	2001	2002	2003	2003	2003	inues)
Country	Spain	United States	United States	Venezuela	Greece	United States	United States	Poland	Poland	Great Britain	China	(table continues)
School	no data	college/university	elementary	high school	college/university	elementary	college/university	elementary	high school	college/university	college/university	
No. of effects	24	ю	0	32	4	20	-	6		2	9	
r	41.	.28	41.	.16	II.	80.	41.	.28	90.	.07	60.	
N	2,264	79	71	141	54	179	148	445	200	70	859	
Achievement measure	GPA	GPA	The Texas Learning Index The Texas Assessment of Academic Skills	GPA	GPA	GPA Iowa Test of Basic Skills	GPA	School Achievement Tests	GPA	GPA	GPA	
Creativity measure	Abedi-Schumacher Creativity Test	The Alternative Uses Test (Based on Guilford and Wallach, Kogan tests)	TTCT, figural	TTCT, figural	Three Open Tasks	TICT	TTCT	Modified Guilford Tests of Divergent Thinking	Creative Behavior Questionnaire	The Barron-Welsh Art Scale	Alternate Uses Test Guilford	
Type of publication	Journal article	Journal article	Unpublished dissertation	Journal article	Journal article	Unpublished dissertation	Journal article	Book	Unpublished thesis	Journal article	Journal article	
Aim of the study	The validity and reliability of an instrument for messuring creativity	Divergent thinking	The relationship of academic achievement with intelligence, creativity, motivation, and nender identification conder identification	Students' academic achievement as an effect of mental abilities, cognitive style, fixation vs. mobility dimensions,	Creativity in physics: the fluency of answers and the snerificity of tasks	Attention-deficit hyperactivity, disorder, creativity, and cognitive styles: interactions and effect on school	The effect of information manipulation and exposure on discount districts.	Students' creativity and their academic	Creative and imitative attitudes and academic achievement in third-grade high school students	Personality and the prediction of academic	The influence of the year of study on university students' creativity	
Study	Auzmendi, Villa, & Abedi, 1996	Johns & Morse, 1997	Simpson, 1998	Niaz, Núñez, & Pineda, 2000	Diakidoy & Constantinou, 2001	Gollmar, 2000	Clapham, 2001	Dobrołowicz, 2002	Grzelak, 2003	Chamorro-Premuzic & Furnham, 2003	Cheung, Rudowicz, Yue, & Kwan, 2003	
No.	41	42	43	4	45	46	47	84	49	50	51	

This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

Year	2004	2004	2004	2004	2005	2005	2005	2006	2006	2006	2007	2007	2007
Country	Hong Kong	Taiwan	Germany	United States	Poland	Poland	United States	Poland	Great Britain	United States	Poland	Germany	United States
School	middle-school	middle-school	middle and high school	college/university	high school	elementary	college/university	high school	college/university	college/university	high school	middle-school	college/university
No. of effects	16	ю	∞	∞	П	2	7	1	ю	2	1	т	6
-	.28	99:	.18	.18	.20	.10	.15	.19	.19	.40	24	.38	.27
>	250	69	271	145	194	167	219	62	307	777	130	1,135	216
Achievement measure	GPA	GPA	GPA	SAT ACT	GPA	GPA	GPA	GPA	GPA	GPA	GPA	GPA	Entrance Examinations CBEST
Creativity measure	Sternberg Triarchic	Ablinues Lest The Alternative Uses Test by WU	Verbaler Kreativity-Test Verwendungs Test	How Creative Are You? How Do You Think?	Urban, Jellen TCT-DP	Urban, Jellen TCT-DP	Test Your Creativity Level Scale Khatena Torrance Creativity Perception	inventory Urban, Jellen TCT-DP	Christensen Alternate Uses Test	Stemberg Triarchic Abilities Test	Urban, Jellen TCT-DP	Berlin Structure of Intelligence Test for Youth: Assessment of Talent and Giftedness	Abbreviated Torrance Test for Adults
Type of publication	Journal article	Journal article	Journal article	Journal article	Journal article	Journal article	Unpublished dissertation	Unpublished thesis	Journal article	Journal article	Unpublished thesis	Journal article	Unpublished dissertation
Aim of the study	School performance	Academic achievement, creativity, and mind-	mapping ability Processing speed, intelligence, creativity, and	The reliability of the TTCT test battery	and sen-report The school performance and creativity of students perceived by teachers as different	in terms of abilities Types of thinking and the academic achievement of 7-	year-otds The relationship between self- regulation and creativity	The talented student in	Creativity and conscientionses: which of the variables is a better predictor of a student's	Enhancing the SAT through assessments of analytical, practical, and	Creative skills Creativity differences	The relationship between cognitive abilities and academic	Teaching, learning, and creativity in Taiwan and the United States
Study	Zhang, 2004	Yeh, 2004	Rindermann & Neubauer, 2004	Clapham, 2004	Karwowski, 2005	Uszyńska-Jarmoc, 2005	Al-Dhobaiban, 2005	Stankiewicz, 2006	Chamorro-Premuzic, 2006	Sternberg, 2006	Arseniuk, 2007	Freund, Holling, & Preckel, 2007	Wang, 2007
No.	52	53	54	55	56	57	28	59	09	61	62	63	64

(table continues)

This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

Tabl	Table 1 (continued)										
No.	Study	Aim of the study	Type of publication	Creativity measure	Achievement measure	N		No. of effects	School	Country	Year
65	Wasil, 2008	The student's creativity as related to his or her grades and position in the	Unpublished thesis	Urban, Jellen TCT-DP	GPA	30	.20	6	high school	Poland	2008
99	Dąbrowska, 2008	teacher's eyes Creative abilities, school performance, and motivation type as related to interpersonal	Unpublished thesis	Urban, Jellen TCT-DP	GPA	75	.10	-	middle-school	Poland	2008
67	Gajda, 2008	attractiveness The accuracy of treachers nominations and the actual level of students' creative	Unpublished thesis	Urban, Jellen TCT-DP	GPA	06	80.	-	elementary	Poland	2008
89	Hirsh & Peterson, 2008	abilities The prediction of creativity using an instrument connected with personality	Journal article	Creative Achievement Questionnaire	GPA	86	.01	-	college/university	Canada	2008
69	Palaniappan & Persekutuan, 2008	The influence of intelligence on the relationship between creativity and academic	Journal article	TTCT, figural	GPA	72	.17	∞	high school	Malaysia	2008
70	Sternberg, 2007	achievement Improving school- related skills by diversifying the	Journal article	Stemberg Triarchic Abilities Test	GPA Scholastic Assessment Test (Writing and Math)	793	.50	4	college/university	United States	2008
71	Silvia, 2008	goals to be achieved Creativity and intelligence: a latent variable analysis by	Journal article	Guilford Tests of Divergent Thinking	School and College Ability Test Sequential Tests of	151	.25	-	elementary	United States	2008
72	Zielińska, 2009	Wallach and Kogan The significant others of young people with different levels	Unpublished thesis	Urban, Jellen TCT-DP	Educational Progress GPA	115	.07	-	high school	Poland	2009
73	Tkaczyk, 2009	of creativity Conflict resolution styles and selected aspects of middle school students'	Unpublished thesis	Urban, Jellen TCT-DP	GPA	209	.18	-	middle-school	Poland	2009
74	Karwowski, Lebuda, & Wiśniewska,	Creativity Creative abilities and styles as predictors of school engage	Journal article	Urban, Jellen TCT-DP	GPA	1,316	11.	7	middle and high school	Poland	2009
75	Naderi, Abdullah, Aizan, Sharir, & Kumar, 2009	Creativity, age, and gender as predictors of students' academic achievement	Journal article	Khatena-Torrance Creative Perception Inventory	GPA	153	.16	-	college/university	Iran	2009

This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

Year	2009	2009	2009	2010	2010	2010	2010	2010	2011	2011	2011
Country	Poland	United States	United States	Nigeria	Great Britain	India	Greece	United States	India	Iran	United States
School	high school	middle-school	college/university	college/university	college/university	elementary	elementary	elementary	high school	college/university	college/university
No. of effects	ю	-		1	1	4	12	61	-1	1	4
r	.12	.48	90.	00.	.31	07	.26	.38	.05	.36	.17
N	94	68	668	235	129	50	115	297	500	272	433
Achievement measure	GPA	Connecticut Mastery Tests	GPA	GPA	GPA	GPA	Achievement Test GPA	Mathematical Knowledge DISCOVER	GPA	GPA	ACT
Creativity measure	Urban, Jellen TCT-DP Creative Behavior Questionnaire	Creative Abilities in Mathematics Test	Creativity Scale based on Kirton and Robinson theories	Nicola Holt Creativity Test: The Creative Cognition Inventory	Gilford Tests of Divergent Thinking	Baqer Mehdi Nonverbal Test of Creativity	Two Open Tasks	DISCOVER (based on Guilford Divergent Thinking Tests)	Verbal Test of Creative Thinking Baqer Mehdi	Arjomand Creativity Questionnaire	Hocevar Creative Behavior Inventory
Type of publication	Book chapter	Journal article	Journal article	Journal article	Journal article	Journal article	Journal article	Journal article	Journal article	Journal article	Journal article
Aim of the study	The accuracy of teachers' nominations in recognizing students' creativity	The identification of creative potential in middle school students	The relationship between creativity and ethical ideologies	Emotional intelligence, creativity, and students' academic	Hope as a predictor of academic personality and academic achievement	Intelligence, creative thinking, and academic achievement in children with hearing disorders	The interrelations between creative behavior, divergent thinking, and knowledge during students' creative expression at the time of beaming the collections.	The developmental differentiation of mathematical creative thinking in children depending on age, education, and the level of knowledge	The relations between school attitude, creativity, and academic academic achievement	Creativity and learning foreign languages	Recruitment tests and creativity
Study	Karwowski, Ciak, & Grubek, 2009	Mann, 2009	Bierly, Kolodinsky, & Charette, 2009	Olatoye, Akintunde, & Yakasai, 2010	Day, Hanson, Maltby, Proctor, & Wood, 2010	Vijetha & Jangaiah, 2010	Kousoulas, 2010	Sak & Maker, 2006	Dhatrak & Wanjari, 2011	Pishghadam, Khodadady, & Zahihi 2011	Dollinger, 2011
No.	76	77	78	79	80	81	83	83	84	85	98

(table continues)

dly.

	7
Ś	ਕ
	0
0	\simeq
7	0
· S	
_	tec
	Ξ.
$\overline{}$	ಡ
Д	
	-=
7	
0	sen
	0
=	00
ಡ	S
	==
93	0
ij	d)
	ŏ
7	
\circ	0
45	\simeq
9	
=	=
0	\subseteq
r one	\Box
0	
\circ	.00
_	
=	ਰ
0	č
Ξ.	=
7	0
- ==	\vdash
0	0
0	Š
S	l usei
00	_
-	-
74	12
_	\equiv
g	7
Ö	· =
	>
ad	
0	7
\preceq	\Box
0	
$\tilde{}$	45
-	9
syc	
100	-
ď	ō
Д	jo
Д	e of
Д	se of
Д	use of
can P	nse of
can P	l use of
can P	al use of
can P	na
merican P	ona
American P	ona
American P	na
American P	ona
American P	ona
the American P	ona
the American P	ona
the American P	ona
American P	ona
by the American P	ona
by the American P	ona
ed by the American P	ona
ed by the American P	ona
ed by the American P	ona
ed by the American P	ona
ed by the American P	ona
ed by the American P	ona
ed by the American P	ona
ed by the American P	ona
ed by the American P	ona
ed by the American P	ona
copyrighted by the American P	ona
copyrighted by the American P	ona
is copyrighted by the American P	ona
is copyrighted by the American P	ona
is copyrighted by the American P	ona
copyrighted by the American P	ona
nent is copyrighted by the American P	ona
nent is copyrighted by the American P	ona
nent is copyrighted by the American P	ona
is copyrighted by the American P	ona
nent is copyrighted by the American P	e is intended solely for the persona
document is copyrighted by the American P	e is intended solely for the persona
document is copyrighted by the American P	ona
document is copyrighted by the American P	ticle is intended solely for the persona
document is copyrighted by the American P	ticle is intended solely for the persona
is document is copyrighted by the American P	ticle is intended solely for the persona
is document is copyrighted by the American P	ticle is intended solely for the persona
is document is copyrighted by the American P	ticle is intended solely for the persona
his document is copyrighted by the American P	ticle is intended solely for the persona
is document is copyrighted by the American P	his article is intended solely for the persona
is document is copyrighted by the American P	ticle is intended solely for the persona
is document is copyrighted by the American P	his article is intended solely for the persona
is document is copyrighted by the American P	his article is intended solely for the persona
is document is copyrighted by the American P	his article is intended solely for the persona
is document is copyrighted by the American P	his article is intended solely for the persona
is document is copyrighted by the American P	his article is intended solely for the persona

Tabl	Table 1 (continued)										
No.	Study	Aim of the study	Type of publication	Creativity measure	Achievement measure	N	r	No. of effects	School	Country	Year
87	Dziedziewicz & Gajda, 2011	Creativity and academic achievement in middle school	Unpublished study	Urban, Jellen TCT-DP	GPA 3-grade and 6-grade Achievement Tests	362	.29	7	middle-school	Poland	2011
88	Petrulyte, 2011	Creativity and academic achievement in	Journal article	TTCT Asmenybes Kurybiskumo Klausimynas	GPA	140	54.	-	high school	Lithuania	2011
68	Vock, Preckel, & Holling, 2011	students of arts Intellectual abilities and academic achievement:	Journal article	Berlin Structure of Intelligence Test for Youth: Assessment of	GPA	1,135	.38	С	high school	Germany	2011
06	Ofili, 2011	analysis of mediators Do multicultural experiences and biculturalism enhance students'	Unpublished thesis	Talent and Gritedness Creative Achievement Questionnaire	GPA	122	.16	-	college/university	United States	2011
91	Hansenne & Legrand, 2012	Creativity (Creativity) Creativity, emotional intelligence, and academic achievement in	Journal article	TTCT	GPA	73	.20	41	elementary	Belgium	2012
92	Piórkowska, 2012	Students The dynamics of strategic behaviors in learning and their associations with	Unpublished thesis	Urban, Jellen TCT-DP	GPA	107	.17	-	high school	Poland	2012
93	Sethi, 2012	Investigating performance in math in relation to the creativity of high	Journal article	Verbal Test of Creative Thinking Baqer Mehdi	Mathematics Achievement Test for 9th Class	700	.26	ю	high school	India	2012
94	Anwar, Aness, Khizar, Naseer, & Muhammad, 2012	school students The relationship between creative thinking and students' academic	Journal article	TTCT	GPA	256	.46	4	high school	Pakistan	2012
95	Awamleh, Al Farah, & El-Zraigat,	achievement Creativity level measured using the	Journal article	TTCT	GPA	63	.39	4	elementary	Jordan	2012
96	Putwain, Kearsley, & Symes, 2012	Creative self-awareness as related to literary achievement and	Journal article	Abedi Test of Creativity	Achievement Test	122	.23	4	middle-school	Great Britain	2012
97	Karwowski & Dziedziewicz, 2012	Correlations between creative imagination and skills at the	Book	Creative Imagery Abilities Test	Test of Skills at School Beginning	1,096	.02	12	nursery and elementary	Poland	2012
86	Walia, 2012	The relationship between achievement and mathematical creativity	Journal article	Balka Creative Ability in Mathematics Test	Sessional Assessment in Mathematics Test	180	99.	ю	middle-school	India	2012

This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

(pan
ontin
1 (6
Table

he study Type of publication intelligence Journal article Nivity in	Type of publication Journal article Ni	olication	Creativit. Nicola Holt	Creativity measure ola Holt Creativity Fest: The Creative	Achievement measure GPA	N 235	r.	No. of effects 1	School college/university	Country	Year 2012
academic achievement Dai et al., 2012 The influence of social Journal article Foetvironment and education conditions	Journal article		Fo	Cognition Inventory Four-item creativity test	GPA	229	.35	2	middle-school	United States	2012
on creativity in adolescence Ibrahim, 2012 The relationship Unpublished dissertation TT between creativity, engineering, knowledge, and	in Unpublished dissertation ivity,		TT	TTCT	GPA	85	.03	٢	college/university	United States	2012
Unpublished dissertation	Unpublished dissertation t,		D	Urban, Jellen TCT-DP	GPA	384	.16	-	elementary	Poland	2013
chools Unpublished study	schools Unpublished study		ר	Urban, Jellen TCT-DP	GPA	392	.14	-	no data	Poland	2013
Unpublished study	Unpublished study		n	Urban, Jellen TCT-DP	GPA	113	.03	-	no data	Poland	2013
Dziedziewicz, 2013 Creativity and learning Unpublished study Crastivity styles	Unpublished study		Ü	Creative Imagery Abilities Test	GPA	238	14.	-	college/university	Poland	2013
imagination Unpublished thesis ademic	Unpublished thesis		Ü	Creative Imagination Test by Kujawski	GPA	140	.12	ĸ	college/university	Poland	2013
Journal article ling- and	Journal article ng- and		õ	Queensland Core Skills Test: "create and present" scores	Reading and Spelling Test Core	855	.32	-	no data	Australia	2013
nder and Journal article icy of creativity	Students, gender and Journal article the accuracy of teachers' creativity nominations		0 050	Creative Activity in Science Creative Activity in Arts Urban Jellen TCT-DP Creative Behavior	GPA	589	.05	ĸ	high school	Poland	2013
Lovelace & Hunter, The influence of Journal article Di 2013 charismatic ideological and pragmatic leaders on the creative process and the products of	Journal article d lers on roccess cts of		Ω	Questionnaire Divergent Thinking Test of Fluency (Baer, 1993)	SAT	336	.03	4	college/university	United States	2013
ent of the Journal article of sased on a	The assessment of the flexibility of thinking based on a new word		A	Abbreviated Torrance Test for Adults	SAT	299	.17	Ŋ	college/university	United States	2013
Journal article ty in	Two methods of scoring creativity in the Aurora test		•	Cartoon Numbers is a subtest of the Aurora Battery	Key Stage 2 Exam Tests MidYIS (Middle Years Information System)	205	99.	7	elementary	Great Britain	2013

This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

(continued)
$\overline{}$
Table

Year	2014	2014	2014	2014	2015	2015	2015	2015	2015
Country	United States	United States	Poland	Poland	United States	United States	United States	Poland	Lithuania
School	college/university	college/university	middle-school	middle-school	college/university	elementary	college/university	elementary	middle-school
No. of effects	2	т	2	4	9	S	12	4	15
7	11.	.37	.25	24	90:	.54	9.	.21	.27
N	100	260	1,611	3,312	201	24	363	5,174	180
Achievement measure	ACT SAT	GPA	Achievement Tests (Mathematics and Language)	Achievement Tests (Mathematics and Language)	GPA Scholastic Assessment Test (Writing and Math) SAT	AIMS Web Achievement Scores Test	Scholastic Assessment Test (Writing and Math) SAT	Mathematic Achievement Test Language Achievement Test	GPA
Creativity measure	Abbreviated Torrance Test for Adults Creative Achievement Questionnaire	Stemberg Triarchic Abilities Test	Divergent Thinking Tests	Guilford Tests of Divergent Thinking	Guilford Tests of Divergent Thinking	Wallach, Kogan Test of Creative Thinking	Creative Self-Efficacy Guilford Tests of Divergent Thinking	Creative Imagery Abilities Test	Urban, Jellen TCT-DP
Type of publication	Journal article	Journal article	Unpublished study	Unpublished study	Journal article	Journal article	Journal article	Journal article	Journal article
Aim of the study	The relationship of psychopathology with creative achievement and creative thinking	Sternberg Triarchic Abilities Test as an instrument for measuring intelligence	Investigating the influence of students with special educational needs on the functioning of their healthy peers	Effects of intraclass comparisons	Examining the role of disagreeableness in the sharing and utilization of original ideas	Pretended play, divergent thinking, and mathematical achievement	University admission criteria and applicants' creativity	The determinants of education efficiency	The relationship between academic achievement and creativity
Study	Zabelina, Condon, & Beeman, 2014	Chooi, Long, & Thompson, 2014	Szumski & Karwowski, 2014	Karwowski & Szumski, 2014	Hunter & Cushenbery, 2015	Wallace & Russ, 2015	Pretz & Kaufman, in press	Jankowska, Gajda, & Karwowski, 2015	Roķe & Kālis, 2015
No.	112	113	114	115	116	117	118	119	120

Note. GPA = grade point average; TTCT = Torrance Test of Creative Thinking; SAT = Stanford Achievement Tests; ACT = American College Testing; CAB 5 = Comprehensive Ability Battery; TCT-DP = Test of Creative Thinking–Drawing Production; CBEST = California Basic Educational Skills Test.

The multilevel meta-analysis was conducted using the meta-SEM package (Cheung, 2014, 2015) in the R statistical environment (R Development Core Team, 2013). When analyzing the effect of publication bias, we also used the Comprehensive Meta-Analysis package (Biostat, 2008), the metafor package in R (Viechtbauer, 2010), and *p*-curve (Simonsohn, Nelson, & Simmons, 2014).

Results

We present the results of the meta-analysis in three steps. First, we present a general estimation of the effect size obtained in the multilevel model and in the random-effects model. Next, we analyze the potential influence of publication bias, which helps determine the robustness of the obtained effect size. Finally, in further multilevel models, we present the results of our moderator analyses.

Overall Effect

Table 2 presents the overall effect of the relationship between creativity and academic achievement. The obtained mean effect size was consistent with our expectations. More specifically, there was a positive and statistically significant, albeit modest, relationship: r=.22, 95% CI [.19, .24].⁴ As expected, this effect was also heterogeneous, Q(df=781)=9,481.65, p<.001. Both withinstudy variance (between particular effects) and between-study variance were statistically significant, with most of the variance being between ($I^2=.62$) rather than within studies ($I^2=.30$).⁵ Prior to examining the influence of moderators, however, we examined to what extent the obtained effect may be influenced by publication bias.

Publication Bias

We analyzed the robustness of the obtained effect size by examining whether it was influenced by publication bias. We used a four-step process that included both classic and more recent methods of analysis. First, we used a funnel plot (Duval & Tweedie, 2000) with several nonparametric techniques to estimate possible bias. We next used a *p*-curve analysis (Simonsohn et al., 2014) and then estimated the effect of using PET-PEESE⁶ (Stanley & Doucouliagos, 2014). Finally, we compared effect sizes obtained in published versus unpublished studies.

An inspection of the funnel plot (see Figure 3) does not suggest asymmetry (i.e., correlations on one side of the funnel do not seem

Table 2
Overall Effect Size Obtained Using Three-Level Meta-Analysis

			95%	6 CI	
Effects	Estimate	SE	LL	UL	p
Fixed effect Overall effect Random effects	.215	.015	.187	.244	<.001
Within-study variance Between-study variance	.010 .020	.001 .003	.008 .013	.011 .026	<.001 <.001

Note. Number of studies = 120, number of effects = 782, total N = 52,578. CI = confidence interval; LL = lower limit; UL = upper limit.

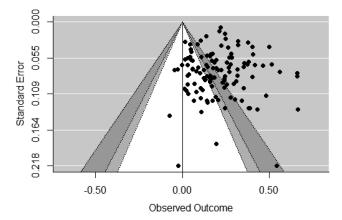


Figure 3. A funnel plot assessing the possible publication bias.

to be regularly suppressed by the effects on the other side). This pattern suggests a lack of publication bias (although such an interpretation is based more on a qualitative judgment, rather than strict statistical rules).

To assist with the interpretation of the funnel plot, researchers conducting meta-analyses often include statistical analysis. We used Egger's regression intercept test (Egger, Davey Smith, Schneider, & Minder, 1997). Based on the random effects model, assessing funnel plot asymmetry, and Begg and Mazumdar (1994) rank correlation test (nonsignificant ps=.42 and .30, respectively), we concluded there was no evidence of publication bias.

We next performed a *p*-curve analysis⁷ (Simonsohn et al., 2014) to examine the credibility of the estimate using the online application available at http://www.p-curve.com/. The results of the *p*-curve analysis (see Figure 4) provided no evidence of a "file-

⁶ This method fits a meta-regression model predicting effect sizes in studies by their variances (the precision effect test, called PET) or their standard errors (the precision effect estimate with standard errors, called PEESE). If the intercept is statistically significant in the PET model, the PEESE model should be taken into account as the publication bias—free effect size.

 7 The *p*-curve analysis focuses only on statistically significant studies (i.e., all effects below significance level are excluded) and checks whether "just significant effects" (i.e., slightly lower than p=.05 or between p=.04 and p=.05) are not overrepresented in the analyzed studies. Such overrepresentation may be caused not only by publication bias but also by "cherry-picking," "*p*-hacking," or other questionable research practices (Simonsohn et al., 2014).

⁴ Robustness check performed using Comprehensive Meta-Analysis software (Biostat, 2008) on averaged effects for studies revealed the existence of an identical relationship. Due to high heterogeneity (Q = 892.61, df = 119, p < .001, $I^2 = 86.67\%$), we performed analyses using the random-effects model, in which we obtained a mean correlation of r = .22, 95% CI [.19, .24], and a high degree of heterogeneity, $\tau^2 = .015$, $\tau = .12$.

<sup>.12.

&</sup>lt;sup>5</sup> The relatively low within-study variance compared to between-study variance suggests that an equally good analytic choice could have been meta-analysis using the random-effects method on data aggregated to the level of individual studies. However, we chose multilevel analysis performed at the level of individual correlations (with correlation grouping in studies controlled for), because some of the possible moderators clearly had a within-study character (e.g., the operationalization of creative abilities as the fluency, flexibility, and originality of thinking).



Figure 4. The p-curve analysis of publication bias. (A) The p-curve analysis and (B) its robustness. See the online article for the color version of this figure.

drawer effect" (i.e., most studies provided highly significant results) and there was also no overrepresentation of "just significant effects" (i.e., slightly lower than p=.05 or between p=.04 and p=.05; Figure 4A). Even more important, p-curve analysis demonstrated that the obtained effects were quite robust and insensitive to the exclusion of subsequent studies with the highest p values (Figure 4B).

Moreover, the continuous test for a right-skewed curve (i.e., examining whether studies contain evidential value) was statistically significant ($z=-30.78,\ p<.0001$), whereas testing for left-skewed studies (i.e., those that exhibit evidence of p-hacking) did not yield significant results (p>.999). Taken together, the results of our p-curve analysis provided further evidence that there was not an influence of publication bias.

The third step in the analysis of publication bias was the creation of a model based on the PET-PEESE method. Because the intercept obtained using PET was statistically significant $(r=.219,\,SE=.016,\,p<.001)$, we adopted the intercept obtained based on PEESE as a measure of effect size not affected by publication bias, as recommended by Stanley and Doucouliagos (2014). The obtained effect was nearly the same as the results reported before (i.e., $r=.215,\,95\%$ CI [.192, .239], p<.001), which also suggests no evidence of publication bias.

Finally, the results of comparing the effects obtained in published, r = .23, 95% CI [.20, .27], versus unpublished studies, r = .19, 95% CI [.15, .22], revealed a marginal difference in favor of published studies (Q = 3.86; df = 1, p = .05), but the similar size of the estimated effects and the overlapping confidence intervals make it legitimate to conclude that publication bias did not substantively influence our estimations.

Moderator Analysis

We analyzed the role of moderators in a sequence of multilevel regression models and used the measures of the baseline model's fit (-2LL = -794.92, df = 3) obtained in our analysis of the overall effect to compare models with moderators included as predictors. This approach allowed us to control for the mutual associations between predictors. At the end of this section, we also

present estimations obtained using the analysis of variance (ANOVA) analog (Wilson, 2014), performed at the study level. Although not as statistically robust as multilevel models, the ANOVA analog analysis provides estimated effects for different groups of studies in a more convenient and easier to interpret fashion.

Types of measurement and study year. In the first step, we entered three moderators representing the measurement of creativity (0 = self-report, 1 = test), academic achievement (0 = test, 1 = GPA), and study year (grand centered). We also included two control variables in Step 1: research objective (0 = other, 1 = creativity—achievement) and publication status (0 = unpublished, 1 = published).

This model demonstrated better fit to the data (-2LL = -813.61, df = 8, $\Delta - 2LL = 18.69$, $\Delta df = 5$, p = .002) compared to our baseline model. The results are presented in Table 3.

As displayed in Table 3, the predictors entered in the model explained 11% of between-study variance and 2.2% of within-study variance. The obtained effects were stronger when creativity was measured using tests compared to when it was measured using self-report scales, as well as stronger for academic achievement measured using standardized tests compared to using GPA. With respect to study year, there was no significant influence on the obtained effect size, suggesting that the correlations were stable across time (see Figure 5). Finally, the two control variables (i.e., research objective and publication status) were not significantly related to effect size.

In the second step, we removed nonsignificant predictors from the model (research objective, publication status, study year) and added variables specifying the location of study (with Europe as the reference value) and type of achievement measured (i.e., performance in the humanities, in sciences, and overall performance, with sport as the reference value). This model did not fit the data significantly better than the previous model (-2LL = -819.37, df = 13, $\Delta -2LL = 5.76$, $\Delta df = 5$, p = .33). Given that these additional moderators did not influence the obtained effects, our results indicate that the relationship between creativity and achievement was stable regardless

Table 3
Moderator Analysis: Types of Measurement and Study Year

			95%	6 CI	
Effects	Estimate	SE	LL	UL	p
Fixed effects					
Intercept	.119	.040	.041	.198	.003
Creativity measurement $(0 = \text{self-report}, 1 = \text{test})$.097	.028	.042	.153	.001
Academic achievement measurement $(0 = \text{test}, 1 = \text{GPA})$	039	.018	074	004	.03
Study year (grand centered)	.0002	.001	001	.002	.76
Goal (0 = other, 1 = creativity \times achievement)	003	.029	060	.054	.91
Published? $(0 = no, 1 = yes)$.054	.030	005	.114	.07
Random effects					
Within-study variance	.009	.001	.008	.011	<.001
Between-study variance	.018	.003	.012	.023	<.001

Note. Number of studies = 120, number of effects = 782, total N = 52,578. CI = confidence interval; LL = lower limit; UL = upper limit;

of location⁸ where the study was conducted and regardless of domain of achievement examined. Moreover, given that these additional moderators were not significant, we do not provide detailed results of Step 2 of the analysis (but interested readers can find those results in the online supplemental material Table S1).

Education stage. The next step took into account the possibility of effects being influenced by the participants' education stage. We used a different model for examining this moderator because eight studies (and 154 correlations) used samples that combined participants from elementary and middle, elementary and high, or middle and high schools. Thus, we removed those eight studies from this step and conducted our analysis using a model that included a total of 628 effects from 112 studies (see Table 4).

The results of multilevel regression, using elementary school students as the reference category, indicated that the effect observed for middle school students was significantly higher than the effect for elementary students (B=0.12, SE=0.05; p=.015). The effect sizes obtained for high school and university/college students did not differ significantly from the effect obtained for elementary school students.

Aspects of creativity tests. Given that we found consistently stronger associations between creativity and academic achievement obtained in studies where creativity was measured using tests compared to self-report, we conducted a more focused analysis on studies that used creativity tests (i.e., 106 studies, 700 effects). The overall effect obtained only in those studies was r=.23, SE=.016, 95% CI [.20, .26], with a significant level of heterogeneity, Q(df=699)=8,145.81, p<.001, situated mainly between studies, $I^2=.60$, rather than within them, $I^2=.31$, -2LL=-676.70, df=3.

Therefore, in the next model, in addition to the method of measuring academic achievement, we included four more specific moderators in the group of creativity test predictors—namely, fluency, flexibility, originality of thinking, elaboration, and overall creative ability (e.g., the sum of TTCT or TCT-DP scores) and other measures (e.g., imagination as measured by Jankowska & Karwowski, 2015). We used a combination of overall indices of creative ability and other measures as the reference category for our analysis. This model did not fit the data better than the previously tested model (-2LL = -681.35, df = 8; $\Delta-2LL =$

4.65, $\Delta df = 5$; p = .46). Moreover, the various aspects of creative ability (fluency, flexibility, originality, elaboration) did not differ from the reference category in terms of the effect size generated (see the online supplemental material Table S3).

Next, we examined whether the verbal or figural characteristics of the creativity test resulted in different obtained effects. For this analysis, from the total pool of studies using creativity tests (106 studies, 700 effects), we excluded 16 studies whose authors did not provide separate results for verbal and figural tests (e.g., Anwar, Aness, Khizar, Naseer, & Muhammad, 2012; Porter, 1974; Zabelina, Condon, & Beeman, 2014). The observed effect was therefore estimated on a total of 90 studies. The results of this model are presented in Table 5.

As depicted in Table 5, the average effect size estimated on 617 correlations did not differ significantly from the overall effect previously reported: r=.228, SE=.017, 95% CI [.194, .262], p<.001; Q(df=616)=7,520.86, p<.001; I^2 between studies = .595; I^2 within studies = .322 (-2LL=-577.52, df=3). This model—which examined test type ($0=figural,\ 1=verbal$), in addition to the previously examined moderators and controls—fit the data better than the previously tested model (-2LL=-685.00, df=15; $\Delta-2LL=107.48$, $\Delta df=12$; p<.001). Moreover, the results of this analysis indicate that verbal tests of creativity generated significantly higher effects than figural tests.

⁸ An anonymous reviewer questioned our decision to include studies published in languages other than English (especially Polish but also Lithuanian). Specifically, the reviewer recommended that we exclude these studies as they may cause difficulty for those who want to replicate our study. Ultimately, we decided to keep these non-English studies in our analysis for three reasons. First, eliminating them would reduce the statistical power of our meta-analysis to 88 studies. Second, our additional analyses (see the online supplemental material Table S2) showed that although studies published in Polish and Lithuanian yielded significantly lower effect size, r = .14, 95% CI [.10, .18], than studies published in English, r = .24, 95% CI [.21, .27], this effect was caused by the fact that nonverbal tests were more often used in Poland and Lithuania, not by the country itself. When we controlled for the type of the test, the effect of country was no longer significant (p = .44). Hence, we decided to analyze all obtained effects. Finally, we are making available the raw data and R scripts to researchers interested in replicating our analyses, available here: https://osf.io/zhr8v/.

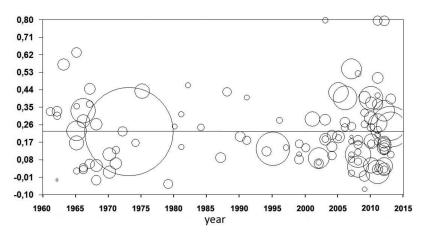


Figure 5. The relations between study year and effect size.

Finally, in an effort to provide a summary of estimated effects of the moderators, we conducted a meta-analysis analog of ANOVA⁹ using the estimations obtained at the study level. Results of that analysis are presented in Table 6. As with our previously reported findings, the results of this analysis indicate that the observed effect was stable across time (similar in concurrent decades) but moderated by the type of creative test used. More specifically, verbal tests developed in the Guilford tradition (e.g., unusual uses or consequences tasks; see Guilford, 1967) resulted in more than two times higher correlations (r = .30) with academic achievement than did figural (e.g., TCT-DP, see Urban, 1991) tests (r = .14). Moreover, the use of standardized academic achievement tests resulted in higher correlations with creativity (r = .28)compared to the use of GPA (r = .19). In addition, the academic stage of middle school (r = .33) resulted in higher correlations between creativity and academic achievement compared to elementary schools (r = .23), high schools (r = .21), and universities (r = .17).

Finally, the results of our ANOVA analog analysis also indicated significant differences in the strength of creativity and academic achievement between continents ($Q=32.58,\,df=5,\,p<.001$). This finding, however, suggests that it is an artifact caused by the lack of control for differences in the characteristics of studies. Indeed, as our previous analysis indicates (see the online supplemental material Table S1), when properly controlling for between-country differences in creativity and academic achievement measurement, continent does not significantly influence the obtained the effect size.

Discussion

The goal of this meta-analysis was to clarify the somewhat mixed findings of previous research that has examined the relationship between creativity and academic achievement. More specifically, we endeavored to obtain a stable estimate of the direction and magnitude of the relationship between creativity and academic achievement. In addition, we had the aim of examining the influence of potential moderators on this observed relationship.

What Is the Relationship Between Creativity and Academic Achievement?

With respect to the relationship between creativity and academic achievement, our results indicate that there is a modest but significantly positive association (r = .22) in the studies we analyzed. Moreover, our analyses indicate that this relationship was not influenced by publication bias. These findings align with longstanding assertions of scholars who have described creativity and learning as representing interrelated phenomena (e.g., Beghetto, 2016a; Guilford, 1967; Piaget, 1962, 1981; Sawyer, 2012; Vygotsky, 1967/2004). The modest magnitude of this relationship (r = .22), however, raises questions as to why the observed association was so low. Indeed, this relationship only explains 5% of the variance in creativity and academic achievement. With so much unaccounted for variance, it is important to consider what factors might be influencing this relationship. The results of our moderator analysis help shed some light on this issue. In the sections that follow, we discuss the results of our moderator analysis and conclude with a brief discussion of strengths, limitations, and future directions for this line of research.

What Is the Influence of Different Types of Measures?

Conceptually speaking, one of the clearest factors that can influence the observed relationship between creativity and academic achievement is how the constructs are measured. Our results indicate that the relationship between creativity and academic achievement was significantly stronger when creativity was measured with tests, r = .23, 95% CI [.20, .26]—particularly verbal tests, r = .30, 95% CI [.25, .34]—compared to when it was measured using self-report scales, r = .12, 95% CI [.07, .17]. That test-based measures would have a stronger influence on the relationship between creativity and academic achievement is not sur-

⁹ Although this analytic technique does not control for the associations and shared variance between moderators (and is therefore less robust than previously reported multilevel regression models), it provides results (i.e., effects in terms of averaged correlations), which tend to be easier for readers to interpret.

Table 4

Moderator Analysis: Education Stage

			95%	CI	
Effects	Estimate	SE	LL	UL	p
Fixed effects					
Intercept	.17	.04	.08	.25	<.001
Creativity measurement $(0 = \text{self-report}, 1 = \text{test})$.08	.03	.02	.14	.01
Academic achievement measurement $(0 = \text{test}, 1 = \text{GPA})$	03	.02	07	.004	.08
Education stage (elementary = reference category)					
Middle school	.12	.05	.02	.21	.015
High school	.004	.04	08	.08	.93
College/university	04	.04	11	.04	.36
Random effects					
Within-study variance	.01	.001	.008	.01	<.001
Between-study variance	.02	.003	.011	.022	<.001

Note. Estimated on 112 studies and 628 correlations. CI = confidence interval; LL = lower limit; UL = upper limit; UL

prising. Indeed, as we noted earlier, cognitive characteristics relevant to creative ability, such as the fluency, flexibility, and originality of thinking (Guilford, 1967); imagination (Jankowska & Karwowski, 2015); induction and deduction abilities (Weisberg, 2006); and the use of specific problem-solving strategies play a considerable role in the learning process (Chamot, Dale, O'Malley, & Spanos, 1992; Hmelo-Silver, 2004). As such, our results provide further evidence of the potentially positive role that creativity can play in the acquisition, consolidation, and processing of new knowledge—including school knowledge (Hennessey & Amabile, 1987).

We also found that obtained effect size differed depending on the type of academic achievement measure used. More specifically, when the criterion of achievement was GPA, the effect was significantly weaker, r = .19, 95% CI [.16, .22], compared to when

achievement was measured using standardized achievement tests, $r=.28,\,95\%$ CI [.22, .34]. This difference may be caused by various factors. It may reflect the lower reliability of school grades compared to standardized achievement tests (Elliott & Strenta, 1988). In a majority of the meta-analyzed studies (especially the early ones), data concerning the reliability of grades were not given, and therefore we were unable to estimate the corrected correlations.

It is also possible, however, that this difference has substantive meaning. One reason why the correlation between creativity and grades was lower than the correlation between creativity and more objective academic achievement tests (Organisation for Economic Co-operation and Development [OECD], 2014) is because the willingness to express one's creativity can be influenced by subtle environmental features of the classroom (Amabile, 1996; Beghetto

Table 5
Moderator Analysis: Figural vs. Verbal Creativity Tests

			95%	CI	
Effects	Estimate	SE	LL	UL	p
Fixed effects					
Intercept	040	.131	296	.216	.76
Year (grand centered)	.001	.001	001	.003	.36
Goal (0 = other, 1 = creativity \times achievement)	.018	.033	048	.083	.59
Published? $(0 = no, 1 = yes)$.004	.035	064	.073	.90
Academic achievement measurement $(0 = \text{test}, 1 = \text{GPA})$	020	.020	060	.019	.31
Test type (figural $= 0$, verbal $= 1$)	.170	.017	.136	.203	<.001
School subjects (sport = reference category)					
Humanistic	.200	.124	043	.443	.11
Science	.189	.124	055	.432	.13
Overall	.164	.127	084	.413	.20
Creative abilities (other $+$ general $=$ reference)					
Fluency	038	.023	083	.007	.10
Flexibility	024	.025	073	.025	.35
Originality	029	.024	076	.018	.23
Elaboration	.018	.030	041	.077	.56
Random effects					
Within-study variance	.009	.001	.007	.011	<.001
Between-study variance	.017	.003	.011	.023	<.001

Note. Estimated on 90 studies and 617 correlations. CI = confidence interval; LL = lower limit; UL = lower limit; UL

Table 6
Meta-Analysis Analog of ANOVA: Summary of Moderators

Moderator	k	N	r	95% CI	Heterogeneity $(Q)^a$
Decade $(Q = 8.83, df = 5, p = .12)$					
1960–1969	19	5,378	.25***	[.18, .32]	126.91***
1970–1979	8	17,198	.17***	[.09, .26]	46.37***
1980–1989	9	1,121	.20**	[.09, .31]	29.56***
1990–1999	7	3,024	.15***	[.11, .19]	6.25
2000–2009	35	10,239	.20***	[.15, .26]	273.57***
2010–2015	42	21,711	.23***	[.18, .27]	377.42***
Region $(Q = 32.58, df = 5, p < .001)$					
Africa	2	539	.03	[06, .11]	.39
South America	1	141	.16	[01, .32]	NA
North America	61	30,299	.22***	[.18, .26]	427.24***
Australia	1	855	.32***	[.26, .38]	NA
Asia	14	3,852	.27***	[.16, .38]	155.63***
Europe	41	22,985	.20***	[.16, .24]	272.55***
Type of creative ability mode ($Q = 26.94$, $df = 2$, $p < .001$)					
Verbal	42	18,929	.30***	[.25, .34]	438.16***
Nonverbal	28	10,451	.14***	[.10, .18]	62.93***
Creativity test $(Q = 10.44, df = 3, p = .02)$					
Guilford	30	11,125	.26***	[.21, .31]	205.19***
TCT-DP	15	3,929	.18***	[.14, .21]	13.78
TTCT	22	3,746	.20***	[.15, .25]	54.66***
Other	25	16,306	.27***	[.21, .34]	394.70***
Academic achievement measure ($Q = 6.27$, $df = 1$, $p = .01$)					
GPA	73	35,341	.19***	[.16, .22]	412.66***
Achievement tests	31	11,328	.28***	[.22, .34]	322.04***
Education stage $(Q = 16.44, df = 3, p = .001)$					
Elementary	26	10,906	.23***	[.17, .29]	204.21***
Middle school	15	8,511	.33***	[.27, .39]	204.73***
High school	28	21,559	.21***	[.16, .26]	148.82***
College/university	42	11,602	.17***	[.12, .22]	287.67***

Note. A meta-analysis analog of analysis of variance (ANOVA) was used with a study as a unit of analysis. k = the number of studies included in the analysis; N = sample size. CI = confidence interval; N = Not Applicable; TCT-DP = Test of Creative Thinking–Drawing Production; TTCT = Torrance Test of Creative Thinking; GPA = grade point average.

& Kaufman, 2014; Hennessey, 2010). Teachers who, for instance, prioritize students' ability to meet predetermined task expectations (over originality) when assessing students' work send subtle messages to students that originality is not necessary or perhaps not wanted (Beghetto, 2013). Consequently, students may learn that it is not worth the risk or effort to try to be creative in their responses. It is also possible that teachers may downgrade more original or unexpected responses. Indeed, there is evidence that teachers sometimes hold negative views about student behaviors associated with creativity (Gralewski & Karwowski, 2013, 2016; Karwowski, 2007, 2010; Scott, 1999; Westby & Dawson, 1995). Regardless of the reason, it is important to note that the observed relationship was still positive (albeit, somewhat modest).

Taken together, these findings help illustrate the importance of the types of measures used to assess creativity and academic achievement. Indeed, given the theoretical links between creativity and learning, one might expect a stronger correlation than what we found. With respect to creativity, the most popular measures tend to focus on divergent thinking (i.e., the ability to produce original ideas) and less on convergent thinking (i.e., the ability to meet task constraints) (see Barbot, Besancon, & Lubart, 2015, for an exception). As such, commonly used creativity tests often fail to represent broader conceptions of creativity (Baer, 2014; Cropley, 2006),

which include a combination of originality and task constraints (Beghetto, Kaufman, & Baer, 2015; Plucker et al., 2004; Simonton, 2012). Consequently, such measures are a bit too narrow in what they measure. The same can be said for self-assessments of creativity.

Indeed, it may be the case that self-assessments also suffer from a form of "originality bias" (Beghetto, 2010; Runco & Acar, 2010) wherein they emphasize the more divergent aspects of creativity at the expense of the more convergent aspects of creativity. Given that academic measures tend to focus more on convergence (i.e., meeting task constraints, providing expected results), the use of overly narrow measures of creativity may result in systematically suppressed estimates of the observed relationship between creativity and academic achievement. At this point, such assertions are somewhat speculative and therefore warrant attention in future studies. As such, future research should focus on developing and testing measures of creativity that more adequately represent the creative combination of divergent and convergent thinking (see Barbot et al., 2015; Lubart & Besancon, in press). Doing so may help clarify whether there is a stronger empirical relationship between creativity and academic achievement than what is otherwise represented in more traditional measures.

^a df for Q statistic is the number of studies (k) - 1.

^{***} p < .001.

With respect to academic achievement, future studies should also use more precise measures of academic achievement. In the case of GPA, it is frequently effort (Brookhart, 1997), progress (Nitko, 2001), or even the student's adjustment to the teacher's demands (Wortham, 2004) that are evaluated. Moreover, given that creative students sometimes approach learning tasks in unexpected and unorthodox ways (Beghetto, 2013, 2016a; Günçer & Oral, 1993; Karwowski & Jankowska, in press), their GPAs may be negatively influenced by failing to meet behavioral expectations (rather than a reflection of academic ability). Measures of academic achievement that more clearly focus on learning gains (rather than meeting teachers' expectations for obtaining those gains) might provide a more accurate assessment of student learning and thereby more accurately reflect the relationship between student creativity and academic achievement.

What Is the Effect of Education Stage?

Our results indicate that the influence of education stage on the relationship between creativity and academic achievement is similar across most stages, with the exception of middle school (r =.33). Why might this be the case? Classic (Torrance, 1968) and more contemporary (Krampen, 2012) analyses suggest that although there may be declines in creativity development in childhood, there seems to be rather systematic growth in creative ability from puberty onward (Claxton, Pannells, & Rhoads, 2005; Milgram & Hong, 1999). Even though there is some evidence of higher levels of creativity in elementary school students compared to middle school students (Yi, Hu, Plucker, & McWilliams, 2013), middle school students may, on average, experience a boost in creative ability. This assertion has a basis in developmental theory (Feldman, 2003) and in neuropsychology (Barbot & Tinio, 2014). The middle school years are, for instance, thought to be a key developmental period for thinking skills, which are then measured in students' skills assessment programs such as Programme for International Student Assessment (OECD, 2014). Although studies have demonstrated an increase in thinking skills starting in elementary school (Molnár, Greiff, & Csapó, 2013), the most pronounced development of these skills tends to be the middle school years (Csapó, 1997). This is not to say that middle school years are free from declines or creative suppression (Beghetto & Dilley, 2016), but prior work suggests that these years of development may serve as a key time of growth in creative abilities (Barbot, Lubart, & Besancon, 2016; Kleibeuker, De Dreu, & Crone, 2013). Such assertions, however, warrant further empirical exploration.

Our findings also indicate higher correlations in the middle school stage of education compared to high school and universities. This finding has less theoretical and empirical support than the observed difference between elementary and middle school. One possible explanation is that learning becomes increasingly more specialized at higher levels of education. The majority of the studies included in our meta-analysis used general rather than discipline-specific measures of creative potential, which tend to have lower levels of predictive validity when explaining more specialized academic achievement (see Baer, 2014, in press). The fact that we did not observe differences in the strength of the relationship between various dimensions of school functioning may also be an indication that domain-general measures of creative ability—which tended to be operationalized as a form of

divergent thinking (i.e., fluency, flexibility, elaboration, and originality of thinking)—were not sensitive enough to provide differential estimations of academic achievement across disciplines.

Once again, these findings point to the importance of the sensitivity and scope of the measures used to assess creativity and academic achievement. Indeed, both creativity and learning researchers tend to be in agreement that creativity and learning are domain specific (Alexander, 1995; Baer, 2014, in press; Beghetto et al., 2015; Poitras & Lajoie, 2013). Future research should therefore use domain-specific measures to examine whether such measures influence the observed relationship between creativity and learning and whether there are potentially important differences across domains.

What Is the Influence of Time and Place?

Finally, we examined the potential influence of time (i.e., when the study was conducted) and place (i.e., what country or continent the study was conducted). Our findings indicate that the relationship between creativity and academic achievement was stable across time and place. This finding differs from the results of previous research, which have suggested that creativity may be declining over time (Kim, 2011) and that creativity is often conceptualized and experienced differently across cultures (Kaufman & Sternberg, 2006).

When interpreting these findings, it is important to point out that the analyses conducted here and in related studies (e.g., Kim, 2005) are cross-sectional. Without longitudinal data, it is difficult (if not impossible) to make any definitive claims about the relationship between creativity and academic achievement across time. Moreover, the studies we analyzed did not have the goal of providing direct comparisons across cultures, and as such, cultural differences that may influence creativity and academic achievement may not have been adequately assessed or represented in the studies we analyzed. Consequently, strong claims about the influence of time and culture are not appropriate until additional research is conducted, which focuses specifically on addressing the impact of time (measured longitudinally) and the impact of culture (using more direct cross-cultural comparisons). Our findings, however, do provide a starting point for researchers to examine whether and under what conditions the positive relationship between creativity and academic achievement is stable across time and place.

Strengths and Limitations of the Present Study

Strengths

A strong point of our meta-analysis is that it serves as the first study to provide a stable estimate of the relationship between creativity and academic achievement. Consequently, this study contributes much-needed clarification on this relationship. Another key strength is the scope of the study. More specifically, our results cover a wide range of temporal (1962–2015), territorial (studies from all over the world), and numerical (120 independent studies, 782 effects, and the total joint sample exceeding 52,000 participants) factors. In fact, this study represents one of the largest meta-analyses in the creativity literature to date. We also consider the analytic models applied (multilevel meta-analysis) to be an

advantage. Indeed, multilevel models enabled us to provide more robust estimations of the observed effects and the effects of key moderators.

Limitations

A disadvantage of this meta-analysis was the limited number of moderators we were able to include. There are several moderating factors (e.g., instructional approach, curriculum used, contextual influences of schools and classrooms, and measures of various individual differences, such as student and teacher beliefs) that may have shed additional light on factors that influence the relationship between creativity and academic achievement. Additional studies are therefore needed that take into account these additional individual and sociocultural factors.

The unavailability of relevant data at the level of individual studies was also a limitation (e.g., the reliability of academic achievement measures). The lack of these data prevented us from being able to make corrections to the obtained effects. Future researchers (and journal reviewers) are therefore well advised to report (and require the reporting of) relevant psychometric data on all measures so that such corrections can be made.

Perhaps the most severe limitation of this synthesis was our inability to properly control for a number of mediators and confounding variables at the level of individual studies. This is a limitation that plagues meta-analytic studies more generally. One way to help address this issue is for researchers to ensure that their studies include as many theoretically important predictors of academic achievement in one study as possible. In the case of creativity, this would include factors such as intelligence and personality (Chamorro-Premuzic & Furnham, 2008; Day, Hanson, Maltby, Proctor, & Wood, 2010), thinking styles (Zhang, 2004, 2010, 2012; Zhang & Sternberg, 2005), motivational factors (Bandura, 1997; Hill & Amabile, 1993; Karwowski, 2011, 2012, 2014; Kaufman & Beghetto, 2013), and contextual factors (Beghetto & Kaufman, 2014; Schacter, Thum, & Zifkin, 2006).

As already mentioned, longitudinal studies, using more precise measures, are particularly needed. Longitudinal studies, although costly in terms of time and resources, would pay out in the form of being able to provide needed insights into how creativity and academic achievement grow and develop over time. Such studies would also enable researchers to empirically test various proposed theoretical links between creativity and academic achievement (Beghetto, 2016a), including whether the relationship is best thought of as unidirectional (e.g., creativity \rightarrow academic achievement; academic achievement \rightarrow creativity) or reciprocal (e.g., creativity \longleftrightarrow academic achievement).

A final limitation we feel important to highlight pertains to the possibility of a nonlinear relationship between creativity and academic achievement. Such a relationship cannot be fully captured in the types of data (correlation coefficients) and analyses used in this study. A nonlinear pattern should therefore not be ruled out. Indeed, there is evidence that such patterns exist between creativity and related constructs, such as creativity and intelligence (see Jauk, Benedek, Dunst, & Neubauer, 2013; Karwowski & Gralewski, 2013). Consequently, subsequent work should explore possible nonlinear patterns in the relationship between creativity and academic achievement using analytic tech-

niques such as segmented regression (Jauk et al., 2013) or a "necessary condition analysis" (Dul, 2016).

Concluding Thoughts

For more than six decades, the question of whether creativity and academic achievement are related has been a focus of theoretical and empirical work in educational psychology. This question has proven to be a thorny one, complicated by various types of measures and potentially intervening factors. Not surprisingly, the results of previous research have run the gamut from positively related, unrelated, and even negatively related. The upshot of a decade's worth of research on this question is that it provided numerous effects that we were able to analyze using robust meta-analytic techniques and thereby take an important step in the direction of addressing the longstanding question of whether creativity and academic achievement are related.

Indeed, prior to this study, the question of whether there is a relationship between creativity and academic achievement could best be answered with the equivocal response of, "It depends." Based on the findings from this meta-analysis, we can now more confidently respond, "Previous research has, on average, demonstrated a positive (albeit modest) relationship between creativity and academic achievement, which is significantly moderated by the types of measures used to assess creativity and academic achievement." This, of course, does not mean that the question is now closed. Rather, the results of the present study provide researchers with a baseline correlation that they can use in subsequent research for comparison and further exploration.

The next logical step is to continue to design studies that examine the stability of this estimate and more carefully examine what additional factors might influence this relationship. We have already pointed to several needed directions for future study. One of the most important future directions pertains to developing and examining the influence of more precise measures of creativity and academic achievement. Such work, however, is not purely empirical. Complementary theoretical work is also needed to help specify how and to what extent creativity and academic achievement are related phenomena. Educational psychologists can play a key role in this endeavor by working alongside creativity researchers to develop more detailed theoretical models that help specify the relationship between creativity and academic achievement and also help develop more sensitive measures that can test and further clarify these asserted relationships. Doing so will provide addi-

¹⁰ The nonlinear relationship between creativity and cognitive abilities, such as intelligence, has been asserted by some of the earliest theorists (e.g., Guilford, 1967). Some theorists have posited a so-called threshold hypothesis (see Jauk et al., 2013; Karwowski & Gralewski, 2013; Preckel, Holling, & Wiese, 2006). This hypothesis asserts a positive relationship between creativity and intelligence only in the groups of individuals whose intelligence level is below an IQ of 120, whereas above this threshold, the correlation is expected to disappear or weaken significantly (Guilford, 1967). Consequently, the threshold hypothesis does not assume linear association but rather a curvilinear inverted J-shaped relationship between intelligence and creativity. Similar thresholds may exist in the relationship between creativity and academic achievement, such as high levels of academic achievement suppressing creativity (see Simonton, in press) or, conversely, high levels of creativity negatively influencing academic achievement (Kim, 2008). We thank an anonymous reviewer for highlighting this possibility.

tional insights into the longstanding question of how creativity and academic achievement are related.

References

References marked with an asterisk indicate studies included in the meta-analysis.

- *Al-Dhobaiban, N. (2005). Exploring the relationship between selfregulation and creativity (Unpublished doctoral dissertation). Alabama: University of Alabama.
- Alexander, P. A. (1995). Superimposing a situation-specific and domain-specific perspective on an account of self-regulated learning. *Educational Psychologist*, *30*, 189–193. http://dx.doi.org/10.1207/s15326985ep3004_3
- Alexander, P. A., Schallert, D. L., & Reynolds, R. E. (2009). What is learning anyway? A topographical perspective considered. *Educa-tional Psychologist*, 44, 176–192. http://dx.doi.org/10.1080/ 00461520903029006
- Amabile, T. M. (1996). Creativity in context. Boulder, CO: Westview.
- Anderson, H. E., Jr., White, W. F., & Stevens, J. C. (1969). Student creativity, intelligence, achievement, and teacher classroom behavior. *The Journal of Social Psychology*, 78, 99–107. http://dx.doi.org/10.1080/00224545.1969.9922344
- *Anwar, M. N., Aness, M., Khizar, A., Naseer, M., & Muhammad, G. (2012). Relationship of creative thinking with the academic achievements of secondary school students. *International Interdisciplinary Journal of Education*, 1, 44–47.
- *Arseniuk, R. (2007). Różnice w zakresie twórczości pomiędzy 12–13letnimi chłlopcami z lekką niepełnosprawnością intelektualną a ich
 pełnosprawnymi intelektualnie rówieśnikami [Differences in creativity
 between the 12–13 year old boys with mild intellectual disabilities and
 their non-disabled peers] (Unpublished master's thesis). Warsaw, Poland: The Maria Grzegorzewska University.
- *Auzmendi, E., Villa, A., & Abedi, J. (1996). Reliability and validity of a newly constructed multiple-choice creativity instrument. *Creativity Research Journal*, 9, 89–95. http://dx.doi.org/10.1207/s15326934crj0901_8
- *Awamleh, H., Al Farah, Y., & El-Zraigat, I. (2012). The level of creative abilities dimensions according to Torrance Formal Test (B) and their relationship with some variables (sex, age, GPA). *International Educational Studies*, 5, 138–148.
- Baer, J. (1993). Divergent thinking and creativity: A task-specific approach. Hillsdale, NJ: Erlbaum.
- Baer, J. (2014). Creativity and divergent thinking: A task-specific approach. New York, NY: Psychology Press.
- Baer, J. (in press). Why you are probably more creative (and less creative) than you think. In M. Karwowski & J. C. Kaufman (Eds.), *The creative self*. New York, NY: Academic Press.
- Baltzer, S. W. (1988). A validation study of a measure of musical creativity. *Journal of Research in Music Education*, 36, 232–249.
- Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: Macmillan.
- Barbot, B., Besancon, M., & Lubart, T. I. (2015). Creative potential in educational settings: Its nature, measure, and nurture. *Education 3–13*, 43, 371–381.
- Barbot, B., Lubart, T. I., & Besançon, M. (2016). "Peaks, slumps, and bumps": Individual differences in the development of creativity in children and adolescents. New Directions for Child and Adolescent Development, 2016, 33–45. http://dx.doi.org/10.1002/cad.20152
- Barbot, B., & Tinio, P. P. (2015). Where is the "g" in creativity? A specialization-differentiation hypothesis. Frontiers in Human Neuroscience, 8, 1041.

- Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. *Biometrics*, 50, 1088–1101. http:// dx.doi.org/10.2307/2533446
- Beghetto, R. A. (2007). Ideational code-switching: Walking the talk about supporting student creativity in the classroom. *Roeper Review: A Jour*nal on Gifted Education, 29, 265–270. http://dx.doi.org/10.1080/ 02783190709554421
- Beghetto, R. A. (2010). Creativity in the classroom. In J. C. Kaufman & R. J. Sternberg (Eds.), *Cambridge handbook of creativity* (pp. 447–464). New York, NY: Cambridge University Press. http://dx.doi.org/10.1017/ CBO9780511763205.027
- Beghetto, R. A. (2013). Killing ideas softly? The promise and perils of creativity in the classroom. Charlotte, NC: IAP Information Age Publishing.
- Beghetto, R. A. (2016a). Creative learning: A fresh look. *Journal of Cognitive Education and Psychology*, 15, 6–23. http://dx.doi.org/10.1891/1945-8959.15.1.6
- Beghetto, R. A. (2016b). *Big wins, small steps: How to lead for and with creativity*. Thousand Oaks, CA: Corwin.
- Beghetto, R. A., & Dilley, A. E. (2016). Creative aspirations or pipe dreams? Toward understanding creative mortification in children and adolescents. *New Directions for Child and Adolescent Development*, 2016, 85–95. http://dx.doi.org/10.1002/cad.20150
- Beghetto, R. A., & Kaufman, J. C. (2007). Toward a broader conception of creativity: A case for "mini-c" creativity. *Psychology of Aesthetics*, *Creativity, and the Arts, 1*, 73–79. http://dx.doi.org/10.1037/1931-3896 .1.2.73
- Beghetto, R. A., & Kaufman, J. C. (2014). Classroom contexts for creativity. *High Ability Studies*, 25, 53–69. http://dx.doi.org/10.1080/13598139.2014.905247
- Beghetto, R. A., Kaufman, J. C., & Baer, J. (2015). Teaching for creativity in the common core classroom. New York, NY: Teachers College Press.
- *Bentley, J. C. (1966). Creativity and academic achievement. *The Journal of Educational Research*, 59, 269–272. http://dx.doi.org/10.1080/00220671.1966.10883353
- *Bierly, P. E., III, Kolodinsky, R. W., & Charette, B. J. (2009). Understanding the complex relationship between creativity and ethical ideologies. *Journal of Business Ethics*, 86, 101–112. http://dx.doi.org/10.1007/s10551-008-9837-6
- Biostat. (2008). Comprehensive Meta-Analysis Software (Version 2.2.064) [Computer software]. Englewood, NJ: Author.
- Blumen-Pardo, S. (2002). Effects of a teacher training workshop on creativity, cognition, and school achievement in gifted and non-gifted second-grade students in Lima, Peru. *High Ability Studies*, *13*, 47–58. http://dx.doi.org/10.1080/13598130220132307
- *Bowers, J. (1969). Interactive effects of creativity and IQ on ninth-grade achievement. *Journal of Educational Measurement*, *6*, 173–177. http://dx.doi.org/10.1111/j.1745-3984.1969.tb00675.x
- Bringuier, J. C. (1980). Conversations with Jean Piaget. Chicago, IL: University of Chicago Press.
- Brookhart, S. M. (1997). A theoretical framework for the role of classroom assessment in motivating student effort and achievement. *Applied Measurement in Education*, 10, 161–180. http://dx.doi.org/10.1207/s15324818ame1002_4
- Carson, S. H., Peterson, J. B., & Higgins, D. M. (2005). Reliability, validity, and factor structure of the creative achievement questionnaire. Creativity Research Journal, 17, 37–50. http://dx.doi.org/10.1207/s15326934crj1701_4
- *Chamorro-Premuzic, T. (2006). Creativity versus conscientiousness: Which is a better predictor of student performance? *Applied Cognitive Psychology*, 20, 521–531. http://dx.doi.org/10.1002/acp.1196
- *Chamorro-Premuzic, T., & Furnham, A. (2003). Personality predicts academic performance: Evidence from two longitudinal university sam-

- ples. Journal of Research in Personality, 37, 319–338. http://dx.doi.org/10.1016/S0092-6566(02)00578-0
- Chamorro-Premuzic, T., & Furnham, A. (2008). Personality, intelligence and approaches to learning as predictors of academic performance. *Personality and Individual Differences*, 44, 1596–1603. http://dx.doi.org/10.1016/j.paid.2008.01.003
- Chamot, A. U., Dale, M., O'Malley, J. M., & Spanos, G. A. (1992). Learning and problem solving strategies of ESL students. *Bilingual Research Journal*, 16, 1–28. http://dx.doi.org/10.1080/15235882.1992.10162635
- *Cheung, C. K., Rudowicz, E., Yue, X., & Kwan, A. S. F. (2003). Creativity of university students: What is the impact of field and year of study? *The Journal of Creative Behavior*, *37*, 42–63. http://dx.doi.org/10.1002/j.2162-6057.2003.tb00825.x
- Cheung, M. W. L. (2014). Fixed- and random-effects meta-analytic structural equation modeling: Examples and analyses in R. Behavior Research Methods, 46, 29–40. http://dx.doi.org/10.3758/s13428-013-0361-y
- Cheung, M. W. L. (2015). metaSEM: An R package for meta-analysis using structural equation modelling. *Frontiers in Psychology, 5,* 1521. http://dx.doi.org/10.3389/fpsyg.2014.01521
- Cheung, C.-K., Roskams, T., & Fisher, D. (2006). Enhancement of creativity through a one-semester course in university. *Journal of Creative Behavior*, 40, 1–25.
- Childs, J. H. (1978). Television viewing, achievement, IQ and creativity (Unpublished doctoral dissertation). Provo, UT: Brigham Young University.
- *Chooi, W. T., Long, H. E., & Thompson, L. A. (2014). The Sternberg Triarchic Abilities Test (Level-H) is a measure of g. *Intelligence*, 2, 56–67. http://dx.doi.org/10.3390/jintelligence2030056
- Cicirelli, V. G. (1967). Sibling constellation, creativity, IQ, and academic achievement. *Child Development*, 38, 481–490. http://dx.doi.org/10 .2307/1127304
- *Clapham, M. M. (2001). The effects of affect manipulation and information exposure on divergent thinking. Creativity Research Journal, 13, 335–350. http://dx.doi.org/10.1207/S15326934CRJ1334_11
- *Clapham, M. M. (2004). The convergent validity of the Torrance Tests of Creative Thinking and creativity interest inventories. *Educational and Psychological Measurement*, 64, 828–841. http://dx.doi.org/10.1177/ 0013164404263883
- Claxton, A. F., Pannells, T. C., & Rhoads, P. A. (2005). Developmental trends in the creativity of school-age children. *Creativity Research Journal*, 17, 327–335. http://dx.doi.org/10.1207/s15326934crj1704_4
- *Cline, V. B., Richards, J. M., Jr., & Abe, C. (1962). The validity of a battery of creativity tests in a high school sample. *Educational and Psychological Measurement*, 22, 781–784. http://dx.doi.org/10.1177/001316446202200416
- *Cline, V. B., Richards, J. M., Jr., & Needham, W. E. (1963). Creativity tests and achievement in high school science. *Journal of Applied Psychology*, 47, 184–189. http://dx.doi.org/10.1037/h0041145
- Cropley, A. (2006). In praise of convergent thinking. Creativity Research Journal, 18, 391–404. http://dx.doi.org/10.1207/s15326934crj1803_13
- Csapó, B. (1997). Development of inductive reasoning: Cross-sectional measurements in an educational context. *International Journal of Be-havioral Development*, 20, 609-626. http://dx.doi.org/10.1080/ 016502597385081
- *Dabrowska, M. (2008). Zdolności twórcze, rezultaty szkolne i typ motywacji a atrakcyjność interpersonalna. Badania poprzeczne w grupach dwunasto-, piętnasto- i osiemnastolatków [Creative abilities, academic achievement, type of motivation and interpersonal attractiveness. Cross study in groups of twelve, fifteen and eighteen-year-olds] (Unpublished master's thesis). Warsaw, Poland: The Maria Grzegorzewska University.

- *Dai, D. Y., Tan, X., Marathe, D., Valtcheva, A., Pruzek, R. M., & Shen, J. (2012). Influences of social and educational environments on creativity during adolescence: Does SES matter? *Creativity Research Journal*, 24, 191–199. http://dx.doi.org/10.1080/10400419.2012.677338
- *Day, L., Hanson, K., Maltby, J., Proctor, C., & Wood, A. (2010). Hope uniquely predicts objective academic achievement above intelligence, personality, and previous academic achievement. *Journal of Research in Personality*, 44, 550–553. http://dx.doi.org/10.1016/j.jrp.2010.05.009
- Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. *Intelligence*, 35, 13–21. http://dx.doi.org/10 .1016/j.intell.2006.02.001
- *DeBoer, D. L. (1964). A study of the relationship of creativity to intelligence and achievement (Unpublished doctoral dissertation). Evanston, IL: Northwestern University.
- *Dhatrak, G., & Wanjari, S. (2011). A co-relational study of scientific attitude, creativity and scholastic achievement of secondary school students. *Indian Streams Research Journal*, 1, 1–4.
- *Diakidoy, I. A. N., & Constantinou, C. P. (2001). Creativity in physics: Response fluency and task specificity. *Creativity Research Journal*, *13*, 401–410. http://dx.doi.org/10.1207/S15326934CRJ1334_17
- Di Domenico, S. I., & Fournier, M. A. (2015). Able, ready, and willing: Examining the additive and interactive effects of intelligence, conscientiousness, and autonomous motivation on undergraduate academic performance. *Learning and Individual Differences*, 40, 41–54.
- Dobrołowicz, J. (2002). Kreatywność uczniów a ich osiągnięcia szkolne [Creativity of students and their academic achievement]. Kielce, Poland: Wydawnictwo Akademii Świętokrzyskiej/Swietokrzyska Academy Press.
- *Dollinger, S. J. (2011). "Standardized minds" or individuality? Admissions tests and creativity revisited. *Psychology of Aesthetics, Creativity, and the Arts, 5, 329–341*. http://dx.doi.org/10.1037/a0023659
- Donovan, S. M., & Bransford, J. D. (2005). How students learn: History, mathematics, and science in the classroom. Washington, DC: The National Academies Press.
- *Dowd, R. J. (1966). The relationship of creative thinking to college success (Final report of Small Contract Project No. 5–8202). Washington, DC: U.S. Office of Education of the Department of Health, Education and Welfare.
- Dul, J. (2016). Necessary Condition Analysis (NCA): Logic and methodology of "necessary but not sufficient" causality. *Organizational Research Methods*, 19, 10-52. http://dx.doi.org/10.1177/1094428115584005
- Dunbar, K. (1997). How scientists think: Online creativity and conceptual change in science. In T. B. Ward, S. M. Smith, & S. Vaid (Eds.), Conceptual structures and processes: Emergence, discovery, and change (pp. 461–493). Washington, DC: APA Press.
- Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics*, 56, 455–463. http://dx.doi.org/10.1111/j.0006-341X.2000 .00455.x
- *Dziedziewicz, D. (2013). *Creativity, academic achievement and learning styles*. Unpublished manuscript. Warsaw, Poland: The Maria Grzegorzewska University.
- *Dziedziewicz, D., & Gajda, A. (2011). Creativity vs. academic achievement in middle school. Unpublished manuscript. Warsaw, Poland: The Maria Grzegorzewska University.
- Dziedziewicz, D., & Karwowski, M. (2015). Development of children's creative visual imagination: A theoretical model and enhancement programmes. *Education 3–13, 43,* 382–392.
- Edwards, M. P., & Tyler, L. E. (1965). Intelligence, creativity, and achievement in a nonselective public junior high school. *Journal of Educational Psychology*, 56, 96–99. http://dx.doi.org/10.1037/h0021899

- Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. *British Medical Journal*, 315, 629–634. http://dx.doi.org/10.1136/bmj.315.7109.629
- Eisenman, R., Platt, J. J., & Darbes, A. (1968). Creativity, intelligence, and achievement. *Psychological Reports*, 22, 749–754. http://dx.doi.org/10.2466/pr0.1968.22.3.749
- Elliott, R., & Strenta, A. C. (1988). Effects of improving the reliability of the GPA on prediction generally and on comparative predictions for gender and race particularly. *Journal of Educational Measurement*, 25, 333–347. http://dx.doi.org/10.1111/j.1745-3984.1988.tb00312.x
- Farzaneh, G., Hassan, A., Gholamreza, P., Mirsalaldin, E., Parviz, A., & Alireza, H. (2010). Relationship between creativity, grade point average, achievement motivation, age and entrepreneur ship among university students. Australian Journal of Basic and Applied Sciences, 4, 5372– 5378.
- *Feldhusen, J. F., Treffinger, D. J., Van Mondfrans, A. P., & Ferris, D. R. (1971). The relationship between academic grades and divergent thinking scores derived from four different methods of testing. *Journal of Experimental Education*, 40, 35–40. http://dx.doi.org/10.1080/00220973.1971.11011301
- Feldman, D. (2003). Key issues in creativity and development. In K. Sawyer, V. John-Steiner, S. Moran, R. Sternberg, D. Feldman, J. Nakamura, & M. Csikszentmihalyi (Eds.), *Creativity and development* (pp. 219–242). New York, NY: Oxford University Press.
- Finke, R. A., Ward, T. B., & Smith, S. M. (1992). *Creative cognition: Theory, research, and applications*. Cambridge, MA: MIT Press.
- Freund, P. A., & Holling, H. (2008). Creativity in the classroom: A multilevel analysis investigating the impact of creativity and reasoning ability on GPA. Creativity Research Journal, 20, 309–318. http://dx.doi .org/10.1080/10400410802278776
- *Freund, P. A., Holling, H., & Preckel, F. (2007). A multivariate, multi-level analysis of the relationship between cognitive abilities and scholastic achievement. *Journal of Individual Differences*, 28, 188–197. http://dx.doi.org/10.1027/1614-0001.28.4.188
- *Gajda, A. (2008). Pudło czy strzał w dziesiątkę? Trafność nominacji nauczycielskich a rzeczywisty poziom zdolności twórczych uczniów [Miss or the jackpot? Relevance of teachers' nominations and the actual level of creative abilities of students] (Unpublished master's thesis). Warsaw, Poland: The Maria Grzegorzewska University.
- *Gajda, A. (2013). Creativity vs. academic achievement in primary school (Unpublished manuscript). Warsaw, Poland: The Maria Grzegorzewska University.
- Gallagher, S. (1985). A comparison of Dabrowski's concept of overexcitabilities with measures of creativity and school achievement in sixthgrade student (Unpublished master's thesis). Tucson: University of Arizona.
- Getzels, J. W., & Jackson, P. W. (1962). Creativity and intelligence: Explorations with gifted students. New York, NY: Wiley.
- *Gluskinos, U. M. (1971). Criteria for student engineering creativity and their relationship to college grades. *Journal of Educational Measurement*, 8, 189–195. http://dx.doi.org/10.1111/j.1745-3984.1971 tb00924 x
- *Gollmar, S. M. (2000). An investigation of attention deficit/hyperactivity disorder, creativity, and cognitive style: Interaction and impact on school success (Unpublished doctoral dissertation). Athens: University of Georgia.
- Gralewski, J., & Karwowski, M. (2012). Creativity and school grades: A case from Poland. *Thinking Skills and Creativity*, 7, 198–208. http://dx.doi.org/10.1016/j.tsc.2012.03.002
- *Gralewski, J., & Karwowski, M. (2013). Polite girls and creative boys? Students' gender moderates accuracy of teachers' ratings of creativity. *The Journal of Creative Behavior*, 47, 290–304. http://dx.doi.org/10.1002/jocb.36

- Gralewski, J., & Karwowski, M. (2016). Are teachers' implicit theories of creativity related to the recognition of their students' creativity? *The Journal of Creative Behavior*. http://dx.doi.org/10.1002/jocb.140
- *Graves, G. O., Ingersoll, R. W., & Evans, L. R. (1967). The creative medical student: A descriptive study. *The Journal of Creative Behavior*, 1, 371–382. http://dx.doi.org/10.1002/j.2162-6057.1967.tb00068.x
- Greiff, S., Wüstenberg, S., Molnár, G., Fischer, A., Funke, J., & Csapó, B. (2013). Complex problem solving in educational contexts—Something beyond g: Concept, assessment, measurement invariance, and construct validity. *Journal of Educational Psychology*, 105, 364–379. http://dx.doi.org/10.1037/a0031856
- Grigorenko, E. L., Jarvin, L., Diffley, R., Goodyear, J., Shanahan, E. J., & Sternberg, R. J. (2009). Are SSATs and GPA enough? A theory-based approach to predicting academic success in secondary school. *Journal of Educational Psychology*, 101, 964–981. http://dx.doi.org/10.1037/a0015906
- *Grzelak, J. (2003). Postawa twórcza i odtwórcza a osiągnięcia szkolne młodzieży III klas szkół średnich [Creative and reproductive attitude and academic achievements of young people of secondary school third graders] (Unpublished master's thesis). Warsaw, Poland: The Maria Grzegorzewska University.
- *Guastello, S. J., Bzdawka, A., Guastello, D. D., & Rieke, M. L. (1992). Cognitive abilities and creative behaviors: CAB-5 and consequences. The Journal of Creative Behavior, 26, 260–267. http://dx.doi.org/10.1002/j.2162-6057.1992.tb01185.x
- Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444–454.Guilford, J. P. (1967). The nature of human intelligence. New York, NY: McGraw-Hill.
- Günçer, B., & Oral, G. (1993). Relationship between creativity and nonconformity to school discipline as perceived by teachers of Turkish elementary school children, by controlling for their grade and sex. *Journal of Instructional Psychology*, 20, 208–214.
- Halliburton-Beatty, C. L., & Simms, J. B. (2013). Meta-analyses of effect of creativity on achievement. Retrieved from http://jacquelinesimms .weebly.com/uploads/1/0/7/0/10705748/halliburtonbeattysimmsfiinalproject-edd1007.pdf
- *Hansenne, M., & Legrand, J. (2012). Creativity, emotional intelligence, and school performance in children. *International Journal of Educational Research*, *53*, 264–268. http://dx.doi.org/10.1016/j.ijer.2012.03 .015
- Hasirci, D., & Demirkan, H. (2007). Understanding the effects of cognition in creative decision making: A creativity model for enhancing the design studio process. *Creativity Research Journal*, 19, 259–271. http://dx.doi.org/10.1080/10400410701397362
- Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. London, UK: Routledge.
- Hennessey, B. A. (2010). Intrinsic motivation and creativity in the class-room: Have we come full circle? In R. A. Beghetto & J. C. Kaufman (Eds.), *Nurturing creativity in the classroom* (pp. 329–361). New York, NY: Cambridge University Press.
- Hennessey, B. A., & Amabile, T. M. (1987). Creativity and learning: What research says to the teacher. Washington, DC: National Education Association.
- *Hetrick, S. H., Lilly, R. S., & Merrifield, P. R. (1968). Figural creativity, intelligence, and personality in children. *Multivariate Behavioral Research*, 3, 173–187. http://dx.doi.org/10.1207/s15327906mbr0302_3
- Hill, K. G., & Amabile, T. M. (1993). A social psychological perspective on creativity: Intrinsic motivation and creativity in the classroom and workplace. In S. G. Isaksen, M. C. Murdock, R. L. Firestien, & D. J. Treffinger (Eds.), *Understanding and recognizing creativity: The emer*gence of a discipline (pp. 400–431). Norwood, NJ: Ablex Publishing.
- *Hirsh, J. B., & Peterson, J. B. (2008). Predicting creativity and academic success with a "fake-proof" measure of the Big Five. *Journal of Re-*

- search in Personality, 42, 1323–1333. http://dx.doi.org/10.1016/j.jrp .2008.04.006
- Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? *Educational Psychology Review*, 16, 235–266. http://dx .doi.org/10.1023/B:EDPR.0000034022.16470.f3
- Hodder, S. M. (1972). A study of the relationship between creativity and student teaching achievement (Unpublished master's thesis). St. John's: Memorial University of Newfoundland.
- *Hunter, S. T., & Cushenbery, L. D. (2015). Is being a jerk necessary for originality? Examining the role of disagreeableness in the sharing and utilization of original ideas. *Journal of Business and Psychology*. Advance online publication. doi:10.1007/s10869-014-9386-1
- *Ibrahim, B. (2012). Exploring the relationships among creativity, engineering knowledge, and design team interaction on senior engineering design projects (Unpublished doctoral dissertation). Fort Collins: Colorado State University.
- *Jackson, B. T. (1982). The relationship of cognitive ability to achievement, creativity, and motivation of academically talented black primary level students in region VI of the District of Columbia public schools (Unpublished doctoral dissertation). Yellow Springs: The Union for Experimenting Colleges and Universities.
- *Janes, S. K. P. (1988). The relationship between creativity test scores and honours course selection, honours course attrition, and grades among high school freshmen (Unpublished doctoral dissertation). College Station: Texas A&M University.
- *Jankowska, D. M., Gajda, A., & Karwowski, M. (2015). Creative imagination and academic achievement: A longitudinal investigation. Unpublished manuscript.
- Jankowska, D. M., & Karwowski, M. (2015). Measuring creative imagery abilities. Frontiers in Psychology, 6, 1591. http://dx.doi.org/10.3389/ fpsyg.2015.01591
- Jauk, E., Benedek, M., Dunst, B., & Neubauer, A. C. (2013). The relationship between intelligence and creativity: New support for the threshold hypothesis by means of empirical breakpoint detection. *Intelligence*, 41, 212–221.
- Jauk, E., Benedek, M., & Neubauer, A. C. (2014). The road to creative achievement: A latent variable model of ability and personality predictors. *European Journal of Personality*, 28, 95–105. http://dx.doi.org/10 .1002/per.1941
- *Joesting, J. (1975). Relationship of two tests of creativity to freshman English grades, school activities, and number of absences for black college students. *Psychological Reports*, *37*, 69–70. http://dx.doi.org/10.2466/pr0.1975.37.1.69
- *Johns, G. A., & Morse, L. W. (1997). Divergent thinking as a function of time and prompting to "be creative" in undergraduates. *The Journal of Creative Behavior*, *31*, 156–165. http://dx.doi.org/10.1002/j.2162-6057 1997 tb00788 x
- Johnson, W., McGue, M., & Iacono, W. G. (2007). How parents influence school grades: Hints from a sample of adoptive and biological families. *Learning and Individual Differences*, 17, 201–219. http://dx.doi.org/10 .1016/j.lindif.2007.04.004
- Kaltsounis, B. (1974). Creative behavior and achievement in mathematics. Psychological Reports, 34, 886. http://dx.doi.org/10.2466/pr0.1974.34.3 .886
- *Kaltsounis, B., & Stephens, H. G. (1973). Arithmetic achievement and creativity: Explorations with elementary school children. *Perceptual and Motor Skills*, *36*, 1160–1162. http://dx.doi.org/10.2466/pms.1973.36.3c .1160
- *Kanderian, S. S. (1969). Study of the relationship between school achievement and measures of intelligence and creativity for students in Iraq (Unpublished doctoral dissertation). Los Angeles: University of Southern California.
- Karnes, M. B., Zehrbach, R. R., Studley, W. M., & Wright, W. R. (1965).
 Culturally disadvantaged children of higher potential: Intellectual func-

- tioning and educational implications. Springfield, IL: Departament of Program Planning for the Gifted, Office of the Superintendent of Public Instruction
- *Karwowski, M. (2005). Rezultaty w nauce i kreatywność uczniów różniących się zdolnościami w percepcji nauczycieli [Results in learning and the creativity of pupils with different abilities in the perception of teachers]. Annales, 18, 93–107.
- Karwowski, M. (2007). Teachers' nominations of students' creativity: Should we believe them? Are the nominations valid? *Social Sciences*, 2, 264–269.
- Karwowski, M. (2010). Are creative students really welcome in the class-rooms? Implicit theories of "good" and "creative" student' personality among Polish teachers. *Procedia: Social and Behavioral Sciences*, 2, 1233–1237. http://dx.doi.org/10.1016/j.sbspro.2010.03.179
- Karwowski, M. (2011). It doesn't hurt to ask... but sometimes it hurts to believe: Polish students' creative self-efficacy and its predictors. *Psychology of Aesthetics, Creativity, and the Arts*, 5, 154–164. http://dx.doi .org/10.1037/a0021427
- Karwowski, M. (2012). Did curiosity kill the cat? Relationship between trait curiosity, creative self-efficacy and creative personal identity. Europe's Journal of Psychology, 8, 547–558. http://dx.doi.org/10.5964/ ejop.y8i4.513
- *Karwowski, M. (2013a). Creativity vs. academic achievement 1 (Unpublished manuscript). Warsaw, Poland: The Maria Grzegorzewska University.
- *Karwowski, M. (2013b). Creativity vs. academic achievement 2 (Unpublished manuscript). Warsaw, Poland: The Maria Grzegorzewska University.
- Karwowski, M. (2014). Creative mindsets: Measurement, correlates, consequences. Psychology of Aesthetics, Creativity, and the Arts, 8, 62–70. http://dx.doi.org/10.1037/a0034898
- Karwowski, M. (2015, July). Creativity and education: An awkward association. Paper presented at the ICIE Excellence & Innovation in Education Conference: The Creativity—Innovation Challenge, Kraków, Poland
- Karwowski, M., Ciak, R., & Grubek, M. (2009). Patrzy, ale czy widzi? Trafność nominacji nauczycielskich w rozpoznaniu kreatywności uczniów (pp. 241–254). [He looks, but does he see? Relevance of teachers nominations in recognizing students' creativity]. In M. Karwowski (Ed.), Identyfikacja potencjałłu twórczego. Teoria, metodologia, diagnostyka [Identification of creative potential. Theory, methodology, diagnostics] Warsaw, Poland: The Maria Grzegorzewska University.
- Karwowski, M., & Dziedziewicz, D. (2012). Test Umiejętności na Starcie Szkolnym [Test of skills at the start of school]. Warsaw, Poland: Instytut Badań Edukacyjnych/Institute for Educational Research.
- Karwowski, M., & Gralewski, J. (2013). Threshold hypothesis: Fact or artifact? *Thinking Skills and Creativity*, 8, 25–33. http://dx.doi.org/10 .1016/j.tsc.2012.05.003
- Karwowski, M., & Jankowska, D. M. (in press). Four faces of creativity at school. In R. A. Beghetto & J. C. Kaufman (Eds.), *Nurturing creativity* in the classroom. New York, NY: Cambridge University Press.
- Karwowski, M., & Lebuda, I. (2015). The Big Five, The Huge Two and creative self-beliefs: A meta-analysis. *Psychology of Aesthetics, Creativity, and the Arts*. Advance online publication. http://dx.doi.org/10.1037/aca0000035
- *Karwowski, M., Lebuda, I., & Wiśniewska, E. (2008–2009). Creative abilities and styles as predictors of school successes. *Gifted and Talented International*, 23–24, 119–127.
- *Karwowski, M., & Szumski, G. (2014). Academic achievement (Unpublished manuscript). Warsaw, Poland: The Maria Grzegorzewska University.
- Kaufman, J. C., & Beghetto, R. A. (2009). Beyond big and little: The four C model of creativity. Review of General Psychology, 13, 1–12. http:// dx.doi.org/10.1037/a0013688

- Kaufman, J. C., & Beghetto, R. A. (2013). In praise of Clark Kent: Creative metacognition and the importance of teaching kids when (not) to be creative. *Roeper Review: A Journal on Gifted Education*, 35, 155–165. http://dx.doi.org/10.1080/02783193.2013.799413
- Kaufman, J. C., Plucker, J. A., & Baer, J. (2008). Essentials of creativity assessment. New York, NY: Wiley.
- Kaufman, J. C., & Sternberg, R. J. (Eds.). (2006). The international handbook of creativity. New York, NY: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511818240
- Kim, K. H. (2005). Can only intelligent people be creative? A metaanalysis. *Journal of Secondary Gifted Education*, 16, 57–66.
- Kim, K. H. (2008). Underachievement and creativity: Are gifted underachievers highly creative? *Creativity Research Journal*, 20, 234–242. http://dx.doi.org/10.1080/10400410802060232
- Kim, K. H. (2011). The creativity crisis: The decrease in creative thinking scores on the Torrance Tests of Creative Thinking. Creativity Research Journal, 23, 285–295. http://dx.doi.org/10.1080/10400419.2011.627805
- *Kim, K. H., & Michael, W. B. (1995). The relationship of creativity measures to school achievement and to preferred learning and thinking style in a sample of Korean high school students. *Educational and Psychological Measurement*, 55, 60–74. http://dx.doi.org/10.1177/0013164495055001006
- Kleibeuker, S. W., De Dreu, C. K., & Crone, E. A. (2013). The development of creative cognition across adolescence: Distinct trajectories for insight and divergent thinking. *Developmental Science*, 16, 2–12. http://dx.doi.org/10.1111/j.1467-7687.2012.01176.x
- *Klein, S., Skager, R., & Erlebacher, W. (1966). Measuring artistic creativity and flexibility. *Journal of Educational Measurement*, *3*, 277–286. http://dx.doi.org/10.1111/j.1745-3984.1966.tb00890.x
- Konstantopoulos, S. (2011). Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis Methods, 2, 61–76. http://dx.doi.org/10.1002/jrsm.35
- *Kousoulas, F. (2010). The interplay of creative behavior, divergent thinking, and knowledge base in students' creative expression during learning activity. *Creativity Research Journal*, 22, 387–396. http://dx.doi.org/10.1080/10400419.2010.523404
- Krampen, G. (2012). Cross-sequential results on creativity development in childhood within two different school systems: Divergent performances in Luxembourg versus German kindergarten and elementary school students. Europe's Journal of Psychology, 8, 423–448. http://dx.doi.org/ 10.5964/eion.v8i3.468
- Lebuda, I., Zabelina, D., & Karwowski, M. (2015). Mind full of ideas: A meta-analysis of the mindfulness-creativity link. *Personality and Indi*vidual Differences. Advance online publication.
- *Lovelace, J. B., & Hunter, S. T. (2013). Charismatic, ideological, and pragmatic leaders' influence on subordinate creative performance across the creative process. *Creativity Research Journal*, 25, 59–74. http://dx.doi.org/10.1080/10400419.2013.752228
- Lubart, T., & Besançon, M. (in press). On the measurement and mismeasurement of creativity. In R. A. Beghetto & B. Sriraman (Eds.), Creative contradictions in education: Cross-disciplinary paradoxes and perspectives. Chad, Switzerland: Springer International.
- Malekian, F., & Fathi, H. (2012). Planning and production of mathematic teaching courseware for school elementary second grade and evaluation of its effect on academic achievement (summation topic) and learner's creativity. *Procedia: Social and Behavioral Sciences*, 46, 780–784. http://dx.doi.org/10.1016/j.sbspro.2012.05.198
- *Mann, E. L. (2009). The search for mathematical creativity: Identifying creative potential in middle school students. *Creativity Research Journal*, *21*, 338–348. http://dx.doi.org/10.1080/10400410903297402
- *Marjoribanks, K. (1976). Academic achievement, intelligence, and creativity: A regression surface analysis. *Multivariate Behavioral Research*, 11, 105–118. http://dx.doi.org/10.1207/s15327906mbr1101_7

- Marsh, H. W., & Hau, K. T. (2004). Explaining paradoxical relations between academic self-concepts and achievements: Cross-cultural generalizability of the internal/external frame of reference predictions across 26 countries. *Journal of Educational Psychology*, 96, 56–67. http://dx.doi.org/10.1037/0022-0663.96.1.56
- *Matthew, C. T., & Stemler, S. E. (2013). Assessing mental flexibility with a new word recognition test. *Personality and Individual Differences*, *55*, 915–920. http://dx.doi.org/10.1016/j.paid.2013.07.464
- Mayfield, B. (1979). Teacher perception of creativity, intelligence and achievement. *Gifted Child Quarterly*, 23, 812–817.
- *McCabe, M. P. (1991). Influence of creativity and intelligence on academic performance. *The Journal of Creative Behavior*, 25, 116–122. http://dx.doi.org/10.1002/j.2162-6057.1991.tb01361.x
- *Mednick, M. T. (1963). Research creativity in psychology graduate students. *Journal of Consulting Psychology*, 27, 265–266. http://dx.doi.org/ 10.1037/h0042429
- *Mednick, M. T., & Andrews, F. M. (1967). Creative thinking and level of intelligence. The Journal of Creative Behavior, 1, 428–431. http://dx .doi.org/10.1002/j.2162-6057.1967.tb00074.x
- Milgram, R. M., & Hong, E. (1999). Creative out-of-school activities in intellectually gifted adolescents as predictors of their life accomplishments in young adults: A longitudinal study. Creativity Research Journal, 12, 77–87. http://dx.doi.org/10.1207/s15326934crj1202_1
- Miller, A. L., Lambert, A. D., & Speirs Neumeister, K. L. (2012). Parenting style, perfectionism, and creativity in high-ability and high-achieving young adults. *Journal for the Education of the Gifted*, 35, 344–365. http://dx.doi.org/10.1177/0162353212459257
- *Mitrofanow, K. (2013). Wyobraźnia twórcza vs osiągnięcia szkolne [Creative imagination vs. academic achievement] (Unpublished master's thesis). Warsaw, Poland: The Maria Grzegorzewska University.
- Molnár, G., Greiff, S., & Csapó, B. (2013). Inductive reasoning, domain specific and complex problem solving: Relations and development. *Thinking Skills and Creativity*, 9, 35–45. http://dx.doi.org/10.1016/j.tsc 2013.03.002
- Muhich, D. (1972). Cross-validation of a behavioral model for predicting school success. *Educational and Psychological Measurement*, 32, 439– 442. http://dx.doi.org/10.1177/001316447203200221
- Mumford, M. D., Medeiros, K. E., & Partlow, P. J. (2012). Creative thinking: Processes, strategies, and knowledge. *The Journal of Creative Behavior*, 46, 30–47. http://dx.doi.org/10.1002/jocb.003
- *Naderi, H., Abdullah, R., Aizan, H. T., Sharir, J., & Kumar, V. (2009). Creativity, age and gender as predictors of academic achievement among undergraduate students. *Journal of American Science*, 5, 101–112.
- *Niaz, M., Núñez, G. S., & Pineda, I. R. (2000). Academic performance of high school students as a function of mental capacity, cognitive style, mobility-fixity dimension, and creativity. *The Journal of Creative Behavior*, 34, 18–29. http://dx.doi.org/10.1002/j.2162-6057.2000.tb01200.x
- Nitko, A. J. (2001). Educational assessment of students. Des Moines, IA: Prentice Hall.
- Organisation for Economic Co-operation and Development (OECD). (2014). PISA 2012 Results in focus: What 15-year-olds know and what they can do with what they know. Paris, France: OECD Publishing.
- *Ofili, P. (2011). Do multicultural experiences and biculturalism promote creativity in international students? (Unpublished master's thesis). Oxford: University of Mississippi.
- *Ohnmacht, F. W. (1966). Achievement, anxiety and creative thinking. American Educational Research Journal, 3, 131–138. http://dx.doi.org/ 10.3102/00028312003002131
- *Olatoye, R. A., Akintunde, S. O., & Yakasai, M. I. (2010). Emotional intelligence, creativity and academic achievement of business administration students. *Electronic Journal of Research in Educational Psychol*ogy, 8, 763–786.

- *Orieux, J. A. (1989). *Correlates of creative ability and performance in high school students* (Unpublished doctoral dissertation). Edmonton: University of Alberta.
- Owen, S. V., Feldhusen, J. F., & Thurston, J. R. (1970). Achievement prediction in nursing education with cognitive, attitudinal, and divergent thinking variables. *Psychological Reports*, 26, 867–870. http://dx.doi .org/10.2466/pr0.1970.26.3.867
- *Palaniappan, A. K., & Persekutuan, W. (2008). Influence of intelligence on the relationship between creativity and academic achievement: A comparative study. *International Journal of Learning*, 15, 267–277.
- Peterson, R. A., & Brown, S. P. (2005). On the use of beta coefficients in meta-analysis. *Journal of Applied Psychology*, 90, 175–181.
- *Petrulyte, A. (2011). Bendrojo ugdymo mokyklu, kuriose sustiprintas meninis ugdymas, mokiniu kurybiškumas ir mokymosi sëkmë [Creativity and academic achievement of students at school with art specialization]. Ugdymo psichologija, 22, 48–54.
- Piaget, J. (1962). Play, dreams and imitation in childhood. New York, NY: Basic Books.
- Piaget, J. (1981). Creativity. In J. M. Gallagher & K. Reid (Eds.), The learning theory of Piaget and Inhelder (pp. 221–229). Monterey, CA: Brook/Cole.
- *Piórkowska, S. (2012). †Latwiej, szybciej i z sukcesem—dynamika zachowań strategicznych w uczeniu się i ich związki ze zdolnościami twórczymi [It's easier, faster and successfully—the dynamics of strategic behavior in learning and their relationships with creative skills] (Unpublished master's thesis). Warsaw, Poland: The Maria Grzegorzewska University.
- *Pishghadam, R., Khodadady, E., & Zabihi, R. (2011). Learner creativity in foreign language achievement. *European Journal of Educational Studies*, *3*, 465–472.
- Plucker, J., Beghetto, R. A., & Dow, G. (2004). Why isn't creativity more important to educational psychologists? Potential, pitfalls, and future directions in creativity research. *Educational Psychologist*, 39, 83–96. http://dx.doi.org/10.1207/s15326985ep3902_1
- Poitras, E. G., & Lajoie, S. P. (2013). A domain-specific account of self-regulated learning: The cognitive and metacognitive activities involved in learning through historical inquiry. *Metacognition and Learn*ing, 8, 213–234. http://dx.doi.org/10.1007/s11409-013-9104-9
- *Popov, A. (1992). Creativity and reading comprehension. *The Journal of Creative Behavior*, 26, 206–212. http://dx.doi.org/10.1002/j.2162-6057.1992.tb01177.x
- Poropat, A. E. (2009). A meta-analysis of the five-factor model of personality and academic performance. *Psychological Bulletin*, *135*, 322–338. http://dx.doi.org/10.1037/a0014996
- *Porter, J. N. (1974). Race, socialization and mobility in educational and early occupational attainment. *American Sociological Review*, *39*, 303–316. http://dx.doi.org/10.2307/2094291
- Preckel, F., Holling, H., & Wiese, M. (2006). Relationship of intelligence and creativity in gifted and non-gifted students: An investigation of threshold theory. *Personality and Individual Differences*, 40, 159–170. http://dx.doi.org/10.1016/j.paid.2005.06.022
- *Pretz, J. E., & Kaufman, J. C. (in press). Do traditional admission criteria reflect applicant creativity? *The Journal of Creative Behavior*. http://dx.doi.org/10.1002/jocb.120
- Priest, T. (2006). Self-evaluation, creativity, and musical achievement. *Psychology of Music*, 34, 47–61. http://dx.doi.org/10.1177/0305735606059104
- *Putwain, D. W., Kearsley, R., & Symes, W. (2012). Do creativity self-beliefs predict literacy achievement and motivation? *Learning and Individual Differences*, 22, 370–374. http://dx.doi.org/10.1016/j.lindif
- R Development Core Team. (2013). *Nlme: Linear and nonlinear mixed effects models* (R package Version 3.1–103). Vienna, Austria: R Foundation for Statistical Computing.

- Richards, R. L., & Casey, M. B. (1975, March). Creativity and academic motivation variables as predictors of achievement in a two-year college for educationally marginal students. Paper presented at the annual meeting of the American Educational Research Association, Washington, DC.
- *Rindermann, H., & Neubauer, A. C. (2004). Processing speed, intelligence, creativity, and school performance: Testing of causal hypotheses using structural equation models. *Intelligence*, 32, 573–589. http://dx.doi.org/10.1016/j.intell.2004.06.005
- *Ritchie, S. J., Luciano, M., Hansell, N. K., Wright, M. J., & Bates, T. C. (2013). The relationship of reading ability to creativity: Positive, not negative associations. *Learning and Individual Differences*, 26, 171–176. http://dx.doi.org/10.1016/j.lindif.2013.02.009
- *Rodriguez, E. (1980). Impact of creative training on academic achievement and creative thinking skills concerning four ethnic-sex groups in the fourth grade (Unpublished doctoral dissertation). Las Cruces: New Mexico State University.
- *Roke, L., & Kālis, E. (2015). Is there a link between creativity and school grades? Research with 9th grade students. *International Journal of Psychology: A Biopsychosocial Approach*, 16, 7–22.
- Rudowicz, E. (2003). Creativity and culture: A two way interaction. Scandinavian Journal of Educational Research, 47, 273–290. http://dx.doi.org/10.1080/00313830308602
- Runco, M. A. (1991). The evaluative, valuative, and divergent thinking of children. *The Journal of Creative Behavior*, 25, 311–319. http://dx.doi .org/10.1002/j.2162-6057.1991.tb01143.x
- Runco, M. A., & Acar, S. (2010). Do tests of divergent thinking have an experiential bias? *Psychology of Aesthetics, Creativity, and the Arts, 4*, 144–148. http://dx.doi.org/10.1037/a0018969
- Runco, M. A., & Albert, R. S. (1985). The reliability and validity of ideational originality in the divergent thinking of academically gifted and non-gifted children. *Educational and Psychological Measurement*, 45, 483–501.
- Sackett, P. R., Kuncel, N. R., Arneson, J. J., Cooper, S. R., & Waters, S. D. (2009). Does socioeconomic status explain the relationship between admissions tests and post-secondary academic performance? *Psychological Bulletin*, 135, 1–22.
- *Sak, U., & Maker, J. (2006). Developmental variation in children's creative mathematical thinking as a function of schooling, age, and knowledge. *Creativity Research Journal*, 18, 279–291. http://dx.doi.org/10.1207/s15326934crj1803_5
- Sawyer, R. K. (2012). Explaining creativity: The science of human innovation (2nd ed.). New York, NY: Oxford University Press.
- Schacter, J., Thum, Y. M., & Zifkin, D. (2006). How much does creative teaching enhance elementary school students' achievement? *The Journal of Creative Behavior*, 40, 47–72. http://dx.doi.org/10.1002/j.2162-6057 2006 tb01266 x
- Scott, C. L. (1999). Teacher's biases toward creative children. Creativity Research Journal, 12, 321–328. http://dx.doi.org/10.1207/s15326934crj1204_10
- *Sethi, N. (2012). A study of academic achievement in mathematics in relation to creativity of high school students. *Indian Streams Research Journal*, 2. http://dx.doi.org/10.9780/22307850, http://isrj.org/Uploaded Data/981.pdf
- *Silvia, P. J. (2008). Creativity and intelligence revisited: A latent variable analysis of Wallach and Kogan (1965). Creativity Research Journal, 20, 34–39. http://dx.doi.org/10.1080/10400410701841807
- Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2014). P-curve: A key to the file-drawer. *Journal of Experimental Psychology: General*, 143, 534–547. http://dx.doi.org/10.1037/a0033242
- Simonton, D. K. (2012). Taking the US Patent Office creativity criteria seriously: A quantitative three-criterion definition and its implications. *Creativity Research Journal*, 24, 97–106.
- Simonton, D. K. (in press). Big-C versus little-c Creativity: Definitions,

- implications, and inherent educational contradictions. In R. A. Beghetto & B. Sriraman (Eds.), *Creative contradictions in education: Cross disciplinary perspectives and paradoxes. Chad, Switzerland: Springer International.*
- *Simpson, N. D. (1998). Relationships between the academic achievement and the intelligence, creativity, motivation, and gender role identity of gifted children (Unpublished doctoral dissertation). Houston, TX: University of Houston.
- *Skager, R. W., Klein, S. P., & Schultz, C. B. (1967). The prediction of academic and artistic achievement at a school of design. *Educational Measurement: Issues and Practice*, 4, 105–117. http://dx.doi.org/10.1111/j.1745-3984.1967.tb00577.x
- Son, M. J. (2009). A study of Korean students' creativity in science using structural equation modelling (Unpublished doctoral dissertation). Tucson: University of Arizona.
- *Stallings, W. M., & Gillmore, G. M. (1972, April). Relationships between figural creativity and grades in a college of fine and applied arts. Paper presented at the American Educational Research Association Annual Meeting, Chicago, IL.
- *Stankiewicz, A. (2006). *Uczeń zdolny w oczach nauczyciela* [Gifted student in the teacher's opinion] (Unpublished master's thesis). Warsaw, Poland: The Maria Grzegorzewska University.
- Stanley, T. D., & Doucouliagos, H. (2014). Meta-regression approximations to reduce publication selection bias. *Research Synthesis Methods*, 5, 60–78. http://dx.doi.org/10.1002/jrsm.1095
- Sternberg, R. J. (1998). Cognitive mechanisms in human creativity: Is variation blind or sighted? *The Journal of Creative Behavior*, *32*, 159–176. http://dx.doi.org/10.1002/j.2162-6057.1998.tb00813.x
- Sternberg, R. J. (1999). A propulsion model of types of creative contributions. Review of General Psychology, 3, 83–100. http://dx.doi.org/10.1037/1089-2680.3.2.83
- *Sternberg, R. J. (2006). The Rainbow Project: Enhancing the SAT through assessments of analytical, practical, and creative skills. *Intelligence*, *34*, 321–350. http://dx.doi.org/10.1016/j.intell.2006.01.002
- *Sternberg, R. J. (2007). Increasing academic excellence and enhancing diversity are compatible goals. *Educational Policy*, 22, 487–514. http:// dx.doi.org/10.1177/0895904807310037
- Sternberg, R., & Lubart, T. (1999). The concept of creativity: Prospect and paradigm. In R. Sternberg (Ed.), *Handbook of creativity* (pp. 3–15). Cambridge, NY: Cambridge University Press.
- *Stiles, N. C. H. (1982). Correlates of dimensions of creativity obtained by education graduate students (Unpublished doctoral dissertation). Tempe: Arizona State University.
- *Szumski, G., & Karwowski, M. (2014). Academic achievement (Unpublished manuscript). Warsaw, Poland: The Maria Grzegorzewska University.
- *Tan, M., Mourgues, C., Bolden, D. S., & Grigorenko, E. L. (2014). Making numbers come to life: Two scoring methods for creativity in Aurora's Cartoon Numbers. *The Journal of Creative Behavior*, 48, 25–43. http://dx.doi.org/10.1002/jocb.39
- *Tatlah, I. A., Aslam, T. M., Ali, Z., & Iqbal, M. (2012). Role of intelligence and creativity in the academic achievement of students. *International Journal of Physical and Social Sciences*, 2, 1–10.
- *Tibbetts, J. W. (1968). Relationships of creativity to socioeconomic status, race, sex, IQ, age and grade-point average in an adolescent population (Unpublished doctoral dissertation). Los Angeles: University of Southern California.
- *Tkaczyk, E. (2009). Kreatywnie to znaczy razem . . . Style rozwiązywania konfliktów a wybrane aspekty kreatywności uczniów gimnazjum [Creatively means together . . . Style of conflict resolution and some aspects of creativity among secondary school students] (Unpublished master's thesis). Warsaw, Poland: The Maria Grzegorzewska University.
- *Toll, A. R. (1985). Relationship between selected New York: Guilford Press structure-of-intellect semantic transformation tests and a measure

- of reading comprehension among sixth-grade students (Unpublished doctoral dissertation). Philadelphia, PA: Temple University.
- Torrance, E. P. (1968). Torrance tests of creative thinking. Princeton, NJ: Personnel Press.
- Unal, H., & Demir, I. (2009). Divergent thinking and mathematics achievement in Turkey: Findings from the programme for international student achievement (PISA-2003). *Procedia: Social and Behavioral Sciences*, 1, 1767–1770. http://dx.doi.org/10.1016/j.sbspro.2009.01.313
- Urban, K. K. (1991). On the development of creativity in children. Creativity Research Journal, 4, 177–191. http://dx.doi.org/10.1080/10400419109534384
- *Uszyńska-Jarmoc, J. (2005). Different types of thinking of seven-year-old children and their achievements in school. Early Child Development and Care, 175, 671–680. http://dx.doi.org/10.1080/0300443042000302627
- Vartanian, O., Martindale, C., & Kwiatkowski, J. (2003). Creativity and inductive reasoning: The relationship between divergent thinking and performance on Wason's 246 task. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 56, 641–655. http://dx.doi.org/10.1080/02724980244000567
- Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. *Journal of Statistical Software*, 36, 1–48. http://dx.doi.org/10 .18637/jss.v036.i03
- *Vijetha, P., & Jangaiah, C. (2010). Intelligence, creative thinking abilities and academic achievement of children with hearing impairment—a correlation study. *Journal of the All India Institute of Speech & Hearing*, 29, 262–268.
- *Vock, M., Preckel, F., & Holling, H. (2011). Mental abilities and school achievement: A test of a mediation hypothesis. *Intelligence*, 39, 357– 369. http://dx.doi.org/10.1016/j.intell.2011.06.006
- Vygotsky, L. S. (2004). Imagination and creativity in childhood. *Journal of Russian and East European Psychology*, 42, 7–97. (Original work published 1967).
- *Wade, S. (1968). Differences between intelligence and creativity: Some speculation on the role of environment. *The Journal of Creative Behavior*, 2, 97–101. http://dx.doi.org/10.1002/j.2162-6057.1968.tb00089.x
- *Wagner, S. B. (1972). *Timed and untimed measures of creativity and their correlates* (Unpublished doctoral dissertation). Detroit, MI: Wayne State University.
- *Walia, P. (2012). Achievement in relation to mathematical creativity of eighth grade students. *Indian Streams Research Journal*, 2. http://dx.doi.org/10.9780/22307850, http://isrj.org/UploadedData/808.pdf
- *Wallace, C. E., & Russ, S. W. (2015). Pretend play, divergent thinking, and math achievement in girls: A longitudinal study. *Psychology of Aesthetics, Creativity, and the Arts, 9,* 296–305. http://dx.doi.org/10.1037/a0039006
- Wallas, G. (1926). The art of thought. New York, NY: Harcourt, Brace, & World.
- *Wang, A. Y. (2007). Contexts of creative thinking: Teaching, learning, and creativity in Taiwan and the United States (Unpublished doctoral dissertation). Claremont, CA: Claremont Graduate University.
- *Wasil, E. (2008). Kreatywność ucznia a jego oceny i pozycja w oczach nauczyciela [Student creativity, assessment and position in the opinion of the teacher] (Unpublished master's thesis). Warsaw, Poland: The Maria Grzegorzewska University.
- Weisberg, R. W. (2006). Creativity: Understanding innovation in problem solving, science, invention, and the arts. New York, NY: Wiley.
- Westby, E. L., & Dawson, V. L. (1995). Creativity: Asset or burden in the classroom? *Creativity Research Journal*, 8, 1–10. http://dx.doi.org/10.1207/s15326934crj0801_1
- *Westcott, R. S. (1983). Self-generated humour as an alternative in identifying potentially gifted, talented and creative high school students: An exploratory study (Unpublished doctoral dissertation). Athens: University of Georgia.

- Wilson, D. B. (2014). Meta-analysis macros for SAS, SPSS, and Stata. Retrieved October, 18, 2014, from http://mason.gmu.edu/~dwilsonb/ma.html
- *Wódz, K. (1981). Twórcze uzdolnienia uczniów a ich osiągnięcia szkolne [The creative abilities of students and their academic achievement]. Psychologia Wychowawcza, 5, 577–586.
- Wortham, S. (2004). From good student to outcast: The emergence of a classroom identity. *Ethos*, 32, 164–187. http://dx.doi.org/10.1525/eth.2004.32.2.164
- Yamamoto, K. (1964). A further analysis of the role of creative thinking in high school achievement. *The Journal of Psychology: Interdisciplinary* and Applied, 58, 277–283. http://dx.doi.org/10.1080/00223980.1964 .9916745
- *Yamamoto, K. (1967). Creativity and unpredictability in school achievement. *The Journal of Educational Research*, 60, 321–325. http://dx.doi.org/10.1080/00220671.1967.10883504
- *Yamamoto, K., & Chimbidis, M. E. (1966). Achievement, intelligence and creative thinking in fifth-grade children: A correlational study. *Merrill-Palmer Quarterly*, 12, 233–241.
- *Yeh, Y. C. (2004). Seventh graders' academic achievement, creativity, and ability to construct a cross-domain concept map—a brain function perspective. *The Journal of Creative Behavior*, 38, 125–144. http://dx.doi.org/10.1002/j.2162-6057.2004.tb01236.x
- Yi, X., Hu, W., Plucker, J. A., & McWilliams, J. (2013). Is there a developmental slump in creativity in China? The relationship between organizational climate and creativity development in Chinese adolescents. *The Journal of Creative Behavior*, 47, 22–40. http://dx.doi.org/ 10.1002/jocb.21
- Yorke-Viney, S. (2007). An examination of the effectiveness of arts integration in education on student achievement, creativity and self-

- perception (Unpublished doctoral dissertation). Scranton, PA: Marywood University.
- *Zabelina, D. L., Condon, D., & Beeman, M. (2014). Do dimensional psychopathology measures relate to creative achievement or divergent thinking? Frontiers in Psychology, 5, 1029.
- *Zhang, L. F. (2004). Revisiting the predictive power of thinking styles for academic performance. The Journal of Psychology: Interdisciplinary and Applied, 138, 351–370. http://dx.doi.org/10.3200/JRLP.138.4.351-370
- Zhang, L. F. (2010). Do thinking styles contribute to metacognition beyond self-rated abilities? *Educational Psychology*, 30, 481–494. http://dx.doi .org/10.1080/01443411003659986
- Zhang, L. F. (2012). Why schools should care about intellectual styles. Journal of Cognitive Education and Psychology, 11, 256–270. http://dx.doi.org/10.1891/1945-8959.11.3.256
- Zhang, L. F., & Sternberg, R. J. (2005). A threefold model of intellectual styles. *Educational Psychology Review*, 17, 1–53. http://dx.doi.org/10 .1007/s10648-005-1635-4
- *Zielińska, J. (2009). Twór (-) czy wzór? Osoby znaczące dla młłodzieży o zróżnicowanym poziomie zdolności twórczych i nasileniu postawy twórczej [Creative master? Individuals significant for young people with different levels of severity creative abilities and creative attitude] (Unpublished master's thesis) Warsaw, Poland: The Maria Grzegorzewska University.

Received September 11, 2015
Revision received April 4, 2016
Accepted April 13, 2016